Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 3 | 807-815

Article title

Convection heat transfer in a Maxwell fluid at a non-isothermal surface

Content

Title variants

Languages of publication

EN

Abstracts

EN
Analysis is carried out to study the convection heat transfer in an upper convected Maxwell fluid at a non-isothermal stretching surface. This is a generalization of the paper by Sadeghy et al. [21] to study the effects of free convection currents, variable thermal conductivity and the variable temperature at the stretching surface. Unlike in Sadeghy et al., here the governing nonlinear partial differential equations are coupled. These coupled equations are transformed in to a system of nonlinear ordinary differential equations and are solved numerically by a finite difference scheme (known as the Keller-Box method) and the numerical results are presented through graphs and tables for a wide range of governing parameters. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study of nonlinear convection heat transfer.

Publisher

Journal

Year

Volume

9

Issue

3

Pages

807-815

Physical description

Dates

published
1 - 6 - 2011
online
26 - 2 - 2011

Contributors

  • Department of Mathematics, University of Central Florida, Orlando, Florida, 32816, USA
  • Department of Mathematics, Bangalore University, Bangalore, 560001, India
  • Department of Mathematics, Bangalore University, Bangalore, 560001, India

References

  • [1] B.C. Sakiadis, AlChE J. 7, 26 (1961) http://dx.doi.org/10.1002/aic.690070108[Crossref]
  • [2] L.E. Erickson, L.T. Fan, V.G. Fox, Ind. Eng. Chem. Fund. 5, 19 (1966) http://dx.doi.org/10.1021/i160017a004[Crossref]
  • [3] F.K. Tsou, E.M. Sparrow, R.J. Goldstein, Int. J. Heat Mass Tran. 10, 219 (1967) http://dx.doi.org/10.1016/0017-9310(67)90100-7[Crossref]
  • [4] L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970) http://dx.doi.org/10.1007/BF01587695[Crossref]
  • [5] P.S. Gupta, A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977) http://dx.doi.org/10.1002/cjce.5450550619[Crossref]
  • [6] C.K. Chen, M.I. Char, J. Math. Anal. Appl. 135, 568 (1988) http://dx.doi.org/10.1016/0022-247X(88)90172-2[Crossref]
  • [7] L.G. Grubka, K.M. Bobba, J. Heat Transf. 107, 248 (1985) http://dx.doi.org/10.1115/1.3247387[Crossref]
  • [8] J. Vleggaar, Chem. Eng. Sci. 32, 1517 (1986)
  • [9] D.R. Jeng, T.C.A. Chang, K. Dewitt, J. Heat Transf. 108, 532 (1986) http://dx.doi.org/10.1115/1.3246967[Crossref]
  • [10] B.K. Datta, P. Roy, A.S. Gupta, Int. Commun. Heat Mass 12, 89 (1985) http://dx.doi.org/10.1016/0735-1933(85)90010-7[Crossref]
  • [11] V.M. Soundalgekar, T.V. Ramana Murthy, Warme Stoffubertrag. 14, 91 (1980) http://dx.doi.org/10.1007/BF01806474[Crossref]
  • [12] K.R. Rajagopal, T.Y. Na, A.S. Gupta, Rheol. Acta 23, 213 (1984) http://dx.doi.org/10.1007/BF01332078[Crossref]
  • [13] B. Siddappa, M.S. Abel, Z. Angew. Math. Phys. 36, 890 (1985) http://dx.doi.org/10.1007/BF00944900[Crossref]
  • [14] B.S. Dandapat, A.S. Gupta, Int. J. Nonlin. Mech. 24, 215 (1989) http://dx.doi.org/10.1016/0020-7462(89)90040-1[Crossref]
  • [15] H.I. Andersson, Acta Mech. 95, 227 (1992) http://dx.doi.org/10.1007/BF01170814[Crossref]
  • [16] M.I. Char, J. Math. Anal. Appl. 186, 674 (1994) http://dx.doi.org/10.1006/jmaa.1994.1326[Crossref]
  • [17] R. Cortell, Appl. Math. Comput. 168, 557 (2005) http://dx.doi.org/10.1016/j.amc.2004.09.046[Crossref]
  • [18] K. Vajravelu, D. Rolins, J. Math. Anal. Appl. 158, 241 (1991) http://dx.doi.org/10.1016/0022-247X(91)90280-D[Crossref]
  • [19] R.K. Bhatnagar, G. Gupta, K.R. Rajagopal, Int. J. Nonlin. Mech. 30, 391 (1995) http://dx.doi.org/10.1016/0020-7462(94)00027-8[Crossref]
  • [20] M. Renardy, J. Non-Newtonian Fluid. Mech. 68, 125 (1997) http://dx.doi.org/10.1016/S0377-0257(96)01491-7[Crossref]
  • [21] K. Sadeghy, A.H. Najafi, M. Saffaripour, Int. J. Nonlin. Mech. 40, 1220 (2005) http://dx.doi.org/10.1016/j.ijnonlinmec.2005.05.006[Crossref]
  • [22] T. Hayat, Z. Abbas, M. Sajid, Phys Lett. A 358, 396 (2006) http://dx.doi.org/10.1016/j.physleta.2006.04.117[Crossref]
  • [23] V. Aliakbar, A. Alizadeh-Pahlavan, K. Sadeghy, Commun. Nonlinear Sci. Numer. Simul. 14, 779 (2009) http://dx.doi.org/10.1016/j.cnsns.2007.12.003[Crossref]
  • [24] A. Acrivos, AlChE J. 6, 584 (1960) http://dx.doi.org/10.1002/aic.690060416[Crossref]
  • [25] K. Vajravelu, J. Math. Anal. Appl. 188, 1002 (1994) http://dx.doi.org/10.1006/jmaa.1994.1476[Crossref]
  • [26] T.S. Chen, F.A. Strobel, J. Heat Transf. 102, 170 (1980) http://dx.doi.org/10.1115/1.3244232[Crossref]
  • [27] A. Moutsoglou, T.S. Chen, J. Heat Transf. 102, 371 (1980) http://dx.doi.org/10.1115/1.3244292[Crossref]
  • [28] C.H. Chen, Heat Mass Transfer 33, 471 (1998) http://dx.doi.org/10.1007/s002310050217[Crossref]
  • [29] A.A. Afifty, E.M. Aboeldahab, E.S. Mohammed, Acta Mech. 177, 71 (2005) http://dx.doi.org/10.1007/s00707-005-0235-1[Crossref]
  • [30] C.H. Chen, Acta Mech. 138, 1 (1999) http://dx.doi.org/10.1007/BF01179537[Crossref]
  • [31] M. Ali, F. Al-Youself, Heat Mass Transfer 33, 301 (1998) http://dx.doi.org/10.1007/s002310050193[Crossref]
  • [32] K. Vajravelu, A. Hadjinicolaou, Int. J. Eng. Sci. 35, 1237 (1997) http://dx.doi.org/10.1016/S0020-7225(97)00031-1[Crossref]
  • [33] O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 49, 1813 (2010) http://dx.doi.org/10.1016/j.ijthermalsci.2010.05.015[Crossref]
  • [34] O.D. Makinde, Int. J. Phys. Sci. 5, 700 (2010)
  • [35] O.D. Makinde, Int. J. Numer. Methods Heat Fluid Flow 19, 546 (2009) http://dx.doi.org/10.1108/09615530910938434[Crossref]
  • [36] T.C. Chiam, Int. Commun. Heat Mass Transfer 23, 239 (1996) http://dx.doi.org/10.1016/0735-1933(96)00009-7[Crossref]
  • [37] P.S. Datti, K.V. Prasad, M.S. Abel, A. Joshi, Int. J. Eng. Sci. 42, 935 (2004) http://dx.doi.org/10.1016/j.ijengsci.2003.09.008[Crossref]
  • [38] K.V. Prasad, M.S. Abel, S.K. Khan, Int. J. Numer. Methods Heat Fluid Flow 10, 786 (2000) http://dx.doi.org/10.1108/09615530010359102[Crossref]
  • [39] M.S. Abel, K.V. Prasad, M. Ali, Int. J. Therm. Sci. 44, 465 (2005) http://dx.doi.org/10.1016/j.ijthermalsci.2004.08.005[Crossref]
  • [40] A. Alizadeh-Pahlavan, K. Sadeghy, Commun. Nonlin ear Sci. Numer. Simul. 14, 1355 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.03.001[Crossref]
  • [41] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer (Springer-Verlag, New York, 1984)
  • [42] H.B. Keller, Numerical Methods for Two-point Boundary Value Problems (Dover Publ., New York, 1992)
  • [43] K.V. Prasad, D. Pal, P.S. Datti, Commun. Nonlinear Sci. Numer. Simul. 14, 2178 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.06.021[Crossref]
  • [44] K.V. Prasad, P.S. Datti, K. Vajravelu, Int. J. Heat Mass Tran. 53, 879 (2010) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.11.036[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-010-0080-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.