Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2015 | 60 | 4 | 879-884

Article title

Gamma radiolytic stability of CyMe4BTBP and the effect of nitric acid

Content

Title variants

Languages of publication

EN

Abstracts

EN
The highly selective nitrogen donor ligand CyMe4BTBP for An(III) separation by solvent extraction was irradiated in a 60Co γ-source under varying conditions. Organic solutions of 10 mmol/L ligand in 1-octanol were contacted with different concentrations of nitric acid to observe the influence of an aqueous phase during irradiation. In subsequent liquid-liquid extraction experiments, distribution ratios of 241Am and 152Eu were determined. Distribution ratios decreased with increasing absorbed dose when irradiation was performed in the absence of nitric acid. With addition of nitric acid, initial distribution ratios remained constant over the whole examined dose range up to 300 kGy. For qualitative determination of radiolysis products, HPLC-MS measurements were performed. The protective effect of nitric acid was confirmed, since in samples irradiated with acid contact, no degradation products were observed, but only addition products of the 1-octanol molecule to the CyMe4BTBP molecule.

Publisher

Journal

Year

Volume

60

Issue

4

Pages

879-884

Physical description

Dates

published
1 - 12 - 2015
accepted
15 - 9 - 2015
received
23 - 6 - 2015
online
30 - 12 - 2015

Contributors

  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institut für Energie- und Klimaforschung, Nukleare Entsorgung und Reaktorsicherheit (IEK-6), Forschungszentrum Jülich GmbH (FZJ), 52425 Jülich, Germany, Tel.: +49 2461 61 4896, Fax: +49 2461 61 2450
  • Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Hlavni 1001, 25068 Husinec-Rež, Czech Republic
  • Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, Hlavni 1001, 25068 Husinec-Rež, Czech Republic
  • Nuclear Chemistry & Industrial Materials Recycling, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Kemigården 4, 41296 Gothenburg, Sweden

References

  • 1. OECD-NEA. (2011). Potential benefi ts and impacts of advanced nuclear fuel cycles with actinide partitioning and transmutation. Issy-les-Moulineaux, France: O. Publishing OECD-NEA. (NEA no. 6894).
  • 2. González-Romero, E. M. (2011). Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des., 241, 3436-3444. DOI: 10.1016/j.nucengdes.2011.03.030.[Crossref][WoS]
  • 3. Modolo, G., Geist, A., & Miguirditchian, M. (2015). Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In R. Taylor (Ed.), Reprocessing and recycling of spent nuclear fuel (pp. 245-287). Oxford: Woodhead Publishing.
  • 4. Baron, P., Hérès, X., Lecomte, M., & Masson, M. (2001). Separation of the minor actinides: the DIAMEX-SANEX concept. In Proceedings of the International Conference on Future Nuclear Systems, GLOBAL’01, 9-13 September 2001. Paris, France.
  • 5. Courson, O., Lebrun, M., Malmbeck, R., Pagliosa, G., Romer, K., Satmark, B., & Glatz, J. P. (2000). Partitioning of minor actinides from HLLW using the DIAMEX process. Part 1 - Demonstration of extraction performances and hydraulic behaviour of the solvent in a continuous process. Radiochim. Acta, 88, 857-863. DOI: 10.1524/ract.2000.88.12.857.[Crossref]
  • 6. Malmbeck, R., Courson, O., Pagliosa, G., Romer, K., Satmark, B., Glatz, J. P., & Baron, P. (2000). Partitioning of minor actinides from HLLW using the DIAMEX process. Part 2 - “Hot” continuous counter-current experiment. Radiochim. Acta, 88, 865-871. DOI: 10.1524/ract.2000.88.12.865.[Crossref]
  • 7. Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., Hudson, M. J., & Madic, C. (2006). 6,6ʹ-Bis(5,5,8,8-tetramethyl-5,6,7,8- tetrahydro-benzo[1,2,4]triazin-3-yl)[2,2ʹ]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exch., 24, 463-483. DOI: 10.1080/07366290600761936.[Crossref]
  • 8. Foreman, M. R. S., Hudson, M. J., Drew, M. G. B., Hill, C., & Madic, C. (2006). Complexes formed between the quadridentate, heterocyclic molecules 6,6ʹ-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine (BTBP) and lanthanides(III): implications for the partitioning of actinides(III) and lanthanides(III). Dalton Trans., 13, 1645-1653. DOI: 10.1039/B511321k.[Crossref]
  • 9. Magnusson, D., Christiansen, B., Foreman, M. R. S., Geist, A., Glatz, J. P., Malmbeck, R., Modolo, G., Serrano-Purroy, D., & Sorel, C. (2009). Demonstration of a SANEX process in centrifugal contactors using the CyMe4-BTBP molecule on a genuine fuel solution. Solvent Extr. Ion Exch., 27, 97-106. DOI: 10.1080/07366290802672204.[Crossref][WoS]
  • 10. Wilden, A., Schreinemachers, C., Sypula, M., & Modolo, G. (2011). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Solvent Extr. Ion Exch., 29, 190-212. DOI: 10.1080/07366299.2011.539122.[Crossref]
  • 11. Magnusson, D., Geist, A., Wilden, A., & Modolo, G. (2013). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4-BTBP and TODGA as 1-cycle SANEX solvent. Part II: Flowsheet design for a counter-current centrifugal contactor demonstration process. Solvent Extr. Ion Exch., 31, 1-11. DOI: 10.1080/07366299.2012.700596.[Crossref]
  • 12. Wilden, A., Modolo, G., Schreinemachers, C., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Geist, A., Lewis, F. W., Harwood, L. M., & Hudson, M. J. (2013). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Part III: Demonstration of a laboratory-scale counter-current centrifugal contactor process. Solvent Extr. Ion Exch., 31, 519-537. DOI: 10.1080/07366299.2013.775890.[Crossref]
  • 13. Mincher, B. J. (2010). An overview of selected radiation chemical reactions affecting fuel cycle solvent extraction. ACS Symp. Ser., 1046, 181-192. DOI: 10.1021/bk-2010-1046.ch015.[Crossref]
  • 14. Hill, C., Berthon, L., & Madic, C. (2005). Study of the stability of BTP extractants under radiolysis. In Proceedings of the GLOBAL 2005, 9-13 October (p. 283). Tsukuba, Japan.
  • 15. Retegan, T., Ekberg, C., Englund, S., Fermvik, A., Foreman, M. R. S., & Skarnemark, G. (2007). The behaviour of organic solvents containing C5-BTBP and CyMe4-BTBP at low irradiation doses. Radiochim. Acta, 95, 637-642. DOI: 10.1524/ ract.2007.95.11.637.[WoS][Crossref]
  • 16. Fermvik, A., Berthon, L., Ekberg, C., Englund, S., Retegan, T., & Zorz, N. (2009). Radiolysis of solvents containing C5-BTBP: identifi cation of degradation products and their dependence on absorbed dose and dose rate. Dalton Trans., 32, 6421-6430. DOI: 10.1039/b907084b.[WoS][Crossref]
  • 17. Fermvik, A., Ekberg, C., Englund, S., Foreman, M. R. S. J., Modolo, G., Retegan, T., & Skarnemark, G. (2009). Infl uence of dose rate on the radiolytic stability of a BTBP solvent for actinide(III)/lanthanide(III) separation. Radiochim. Acta, 97, 319-324. DOI: 10.1524/ract.2009.1615.[WoS][Crossref]
  • 18. Magnusson, D., Christiansen, B., Malmbeck, R., & Glatz, J. P. (2009). Investigation of the radiolytic stability of a CyMe4-BTBP based SANEX solvent. Radiochim. Acta, 97, 497-502. DOI: 10.1524/ ract.2009.1647.[WoS][Crossref]
  • 19. Fermvik, A., Aneheim, E., Grüner, B., Hájková, Z., Kvicalová, M., & Ekberg, C. (2012). Radiolysis of C5-BTBP in cyclohexanone irradiated in the absence and presence of an aqueous phase. Radiochim. Acta, 100, 273-282. DOI: 10.1524/ract.2012.1908.[Crossref][WoS]
  • 20. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2010). Review: The effects of radiation chemistry on solvent extraction 4: Separation of the trivalent actinides and considerations for radiation-resistant solvent systems. Solvent Extr. Ion Exch., 28, 415-436. DOI: 10.1080/07366299.2010.485548.[Crossref]
  • 21. Sulich, A., Grodkowski, J., Mirkowski, J., & Kocia, R. (2014). Reactions of ligands from BT(B)P family with solvated electrons and benzophenone ketyl radicals in 1-octanol solutions. Pulse radiolysis study. J. Radioanal. Nucl. Chem., 300, 415-421. DOI: 10.1007/ s10967-014-3021-5.[Crossref]
  • 22. Mincher, B. J., & Mezyk, S. P. (2009). Radiation chemical effects on radiochemistry: A review of examples important to nuclear power. Radiochim. Acta, 97, 519-534. DOI: 10.1524/ract.2009.1646.[Crossref][WoS]
  • 23. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27, 1-25. DOI: 10.1080/07366290802544767.[Crossref]
  • 24. Mincher, B. J. (2015). Radiation chemistry in the reprocessing and recycling of spent nuclear fuels. In R. Taylor (Ed.), Reprocessing and recycling of spent nuclear fuel (pp. 191-211). Oxford: Woodhead Publishing.
  • 25. Nilsson, M., Andersson, S., Ekberg, C., Foreman, M. R. S., Hudson, M. J., & Skarnemark, G. (2006). Inhibiting radiolysis of BTP molecules by addition of nitrobenzene. Radiochim. Acta, 94, 103-106. DOI: 10.1524/ract.2006.94.2.103.[Crossref]
  • 26. Mincher, B. J., Arbon, R. E., Knighton, W. B., & Meikrantz, D. H. (1994). Gamma-ray-induced degradation of PCBs in neutral isopropanol using spent reactor-fuel. Appl. Radiat. Isot., 45, 879-887. DOI: 10.1016/0969-8043(94)90219-4.[Crossref]
  • 27. Freeman, G. R. (1970). Radiolysis of alcohols. Actions Chim. Biol. Radiat., 14, 73-134.
  • 28. Mincher, B. J., Mezyk, S. P., Elias, G., Groenewold, G. S., Riddle, C. L., & Olson, L. G. (2013). The radiation chemistry of CMPO: Part 1. Gamma radiolysis. Solvent Extr. Ion Exch., 31, 715-730. DOI: 10.1080/07366299.2013.815491.[Crossref]
  • 29. Symons, M. C. R., & Eastland, G. W. (1977). Radiation mechanisms. Part 18. The radiolysis of alcohols: an electron spin resonance study. J. Chem. Res., Suppl., 254-255.
  • 30. Sugo, Y., Sasaki, Y., & Tachimori, S. (2002). Studies on hydrolysis and radiolysis of N,N,Nʹ,Nʺ-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim. Acta, 90, 161-165. DOI: 10.1524/ract.2002.90.3_2002.161.[Crossref]
  • 31. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., & Kudo, H. (2007). Influence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem., 76, 794-800. DOI: 10.1016/j.radphyschem.2006.05.008.[Crossref]
  • 32. Steppert, M., Cisarova, I., Fanghanel, T., Geist, A., Lindqvist-Reis, P., Panak, P., Stepnicka, P., Trumm, S., & Walther, C. (2012). Complexation of europium(III) by bis(dialkyltriazinyl)bipyridines in 1-octanol. Inorg. Chem., 51, 591-600. DOI: 10.1021/ic202119x.[Crossref][WoS]
  • 33. Mezyk, S. P., Cullen, T. D., Elias, G., & Mincher, B. J. (2010). Aqueous nitric acid radiation effects on solvent extraction process chemistry. ACS Symp. Ser., 1046, 193-203. DOI: 10.1021/bk-2010-1046.ch016.[Crossref]
  • 34. Mincher, B. J. (2012). Degradation issues in aqueous reprocessing systems. Compr. Nucl. Mater., 5, 367-388. DOI: 10.1016/b978-0-08-056033-5.00104-x.[Crossref]
  • 35. Mincher, B. J., Mezyk, S. P., & Martin, L. R. (2008). A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation. J. Phys. Chem. A, 112, 6275-6280. DOI: 10.1021/jp802169v.[WoS][Crossref]
  • 36. Harwood, L. M., Lewis, F. W., Hudson, M. J., John, J., & Distler, P. (2011). The separation of americium(III) from europium(III) by two new 6,6ʹ-bistriazinyl-2,2ʹ-bipyridines in different diluents. Solvent Extr. Ion Exch., 29, 551-576. DOI: 10.1080/10496475.2011.556989.[Crossref]
  • 37. Joshi, R., Pathak, P. N., Manchanda, V. K., Sarkar, S. K., & Mukherjee, T. (2010). Reactions of N,N-dihexyloctanamide with nitrate and dodecane radicals: a pulse radiolysis study. Res. Chem. Intermed., 36, 503-510. DOI: 10.1007/s11164-010-0161-2.[WoS][Crossref]
  • 38. Neta, P., & Huie, R. E. (1986). Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions. J. Phys. Chem., 90, 4644-4648. DOI: 10.1021/j100410a035.[Crossref]
  • 39. Katsumura, Y. (1998). NO2 • and NO3 • radicals in radiolysis of nitric acid solutions. In Z. B. Alfassi (Ed.), The chemistry of free radicals: N-centered radicals (pp. 393-412). Weinheim: Wiley.
  • 40. Katsumura, Y., Jiang, P. Y., Nagaishi, R., Oishi, T., Ishigure, K., & Yoshida, Y. (1991). Pulse radiolysis study of aqueous nitric acid solutions: formation mechanism, yield, and reactivity of NO3 radical. J. Phys. Chem., 95, 4435-4439. DOI: 10.1021/ j100164a050.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_1515_nuka-2015-0156
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.