Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 28 | 33-44

Article title

Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship

Content

Title variants

Languages of publication

EN

Abstracts

EN
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s-1) to maximal velocity (m•s-1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

Keywords

Publisher

Year

Volume

28

Pages

33-44

Physical description

Dates

published
1 - 6 - 2011
online
4 - 7 - 2011

Contributors

  • Human Motion Diagnostics Center, University of Ostrava, Czech Republic
  • Department of Applied Mathematics, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Czech Republic

References

  • Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J Strength Cond Res 2001a; 15:20-24.[PubMed]
  • Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during jump squats in power-trained athletes. J Strength Cond Res, 2001b; 15:92-97.[PubMed]
  • Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizábal CA. Numerical Optimization: Theoretical and Practical Aspects. Springer, 2006.
  • Caldwell GE. Muscle modeling. In: Robertson G, Caldwell G, Hamill J, Kamen G, Whittlesey S (eds.). Research methods in Biomechanics. Human Kinetics, Champaign, 2004; pp 183-209.
  • Carpinelli RN. The size principle and a critical analysis of the unsubstantiated heavier-is-better recommendation for resistance training. J Exerc Sci Fit, 2008; 6: 67-86.
  • Cormie P, McBride J, McCaulley G. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech, 2007a; 23:103-118.[PubMed]
  • Cormie P, McCaulley G, Triplett N, McBride J. Optimal loading for maximal power output during lowerbody resistance exercises. Med Sci Sport Exer, 2007b; 39:340-349.[Crossref]
  • Hill AV. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society, 1938; B126:136-95.
  • Hori N, Newton R, Nosaka K, McGuigan M. Comparison of Different Methods of Determining Power Output in Weightlifting Exercises. Strength Cond J, 2006; 28:34-40.[Crossref]
  • Jandacka D, Uchytil J. Optimal load maximizes the mean mechanical power output during upper body exercise in highly trained soccer players. J Strength Cond Res, in press;[WoS][PubMed]
  • Jandacka D, Vaverka F. A regression model to determine load for maximum power output. Sport Biomech, 2008; 7:361-371.[WoS][Crossref]
  • Jandacka D, Vaverka F. Validity of mechanical power measurement at bench press exercise. J Human Kinetics. 2009; 21:33-43.
  • Jidovtseff B, Quiêvre J, Hanon C, Crielaard J. Inertial muscular profiles allow a more accurate training loads definition. Sci Sport, 2009; 24:91-96.[WoS][Crossref]
  • Kawamori N, Crum A, Blumert P, et al. Influence of different relative intensities on power output during the hang power clean: identification of the optimal load. J Strength Cond Res, 2005; 19:698-708.[PubMed]
  • Kovaleski J, Heitman R, Scaffidi F, Fondren F. Effects of isokinetic velocity spectrum exercise on average power and total work. J Athl Training, 1992; 27:54-56.
  • Kraemer JW, Newton RU. Training for muscular power. Sci pricip sport rehab, 2000; 11:341-368.
  • Kraemer JW, Ratamess AN, Fry CA French ND. Strength Training: Development and Evaluation of Methodology. In: Maud JP, Foster C (eds.). Physiological Assessment of Human Fitness. Human Kinetics, Champaign, 2006; pp 119-150.
  • Li L, Olson M, Winchester J (2008). A proposed method for determining peak power in the jump squat exercise. J Strength Cond Res. 22:326-331.[Crossref][WoS][PubMed]
  • Miller C. Développement des capacités musculaires. In : Entraînement de la force - spécificité et planification, Les cahiers de l'Insep. 1997; pp 49-84.
  • Newton R, Murphy A, Humphries B, Wilson G, Kraemer W, Hakkinen K. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol, 1997; 75:333-342.[Crossref][PubMed]
  • Thomas G, Kraemer W, Spiering B, Volek J, Anderson J, Maresh C. Maximal power at different percentages of one repetition maximum: influence of resistance and gender. J Strength Cond Res, 2007; 21:336-342.
  • Zatsiorsky VM. Kinetics of Human Motion, Human Kinetics, Champaign, 2002; 528-529.
  • Zatsiorsky VM, Kraemer JW. Science and practice of strength training. Human Kinetics, Champaign, 2006; pp 194-195.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_v10078-011-0020-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.