Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 8 | 821-828

Article title

Removal of zinc ions as zinc chloride complexes from strongly acidic aqueous solutions by ionic exchange

Content

Title variants

Languages of publication

EN

Abstracts

EN
The aim of this study was to compare several anion exchangers and to investigate the capacity of Amberlite IRA410 to remove zinc as chloride [ZnCl3]− from hydrochloric solutions (1 M). Influence of the process parameters such as stirring rate, resin quantity and zinc initial concentration over the removal process, was considered. The highest experimental ionic exchange capacity between the considered anionic exchangers, in the same working conditions (500 rpm, 5 g resin and 500 mg L−1), was obtained for Amberlite IRA410, 8.34 mg g−1. With an increase of zinc ions concentration, ionic exchange capacity increased up to 19.31 mg g−1 (1100 mg L−1). The experimental data were analysed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The results were also analyzed using sorption kinetics models, pseudo-first-, pseudo-second-order, intra-particle and film diffusion models. From the Dubinin-Radushkevich and Temkin isotherm models the mean free energy and heat of sorption were calculated to be 7.45 kJ mol−1, respectively 1×10−4 kJ mol−1, which indicates that zinc sorption is characterized by a physisorption process. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model.

Publisher

Journal

Year

Volume

12

Issue

8

Pages

821-828

Physical description

Dates

published
1 - 8 - 2014
online
1 - 5 - 2014

Contributors

  • Babeş-Bolyai University
  • Babeş-Bolyai University
author
  • Babeş-Bolyai University

References

  • [1] E. Pehlivan, T. Altun, J. Hazard Mater. 140, 299 (2007) http://dx.doi.org/10.1016/j.jhazmat.2006.09.011[Crossref]
  • [2] A. O. Dada, A.P. Olalekan, A.M. Olatunya, O. Dada, J. of Appl. Chem. 3, 38 (2012)
  • [3] P. Dvořák, J. Jandova, Hydrometallurgy 77, 29 (2005) http://dx.doi.org/10.1016/j.hydromet.2004.10.007[Crossref]
  • [4] M. F. San Román, I. Ortiz Gándara, R. Ibañez, I. Ortiz, J. Membrane Sci. 415–415, 616 (2012) http://dx.doi.org/10.1016/j.memsci.2012.05.063[Crossref]
  • [5] J. Carrillo-Abad, M. García-Gabaldón, E. Ortega, V. Pérez-Herranz, Sep. Purif. Technol. 81, 200 (2011) http://dx.doi.org/10.1016/j.seppur.2011.07.029[Crossref]
  • [6] J. Carrillo-Abad, M. García-Gabaldón, E. Ortega, V. Pérez-Herranz, Sep. Purif. Technol. 98, 366 (2012) http://dx.doi.org/10.1016/j.seppur.2012.08.006[Crossref]
  • [7] M. García-Gabaldón, J. Carrillo-Abad, E. Ortega-Navarro, V. Pérez-Herranz, Int. J. Electrochem. Sci. 6, 506 (2011)
  • [8] O. Abdelwahab, N.K. Amin, E-S.Z. El-Ashtoukhy, Chem. Eng. Res. Des. 91, 165 (2013) http://dx.doi.org/10.1016/j.cherd.2012.07.005[Crossref]
  • [9] B. Alyüz, S. Veli, J. Hazard Mater. 167, 482 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.01.006[Crossref]
  • [10] S. J. Kim, K.H. Lim, K.H. Joo, M.J. Lee, S.G. Kil, S.Y. Cho, Korean J. Chem. Eng. 19 1078 (2002)
  • [11] L. C. Lin, R.S. Juang, Chem. Eng. J. 132, 205 (2007) http://dx.doi.org/10.1016/j.cej.2006.12.019[Crossref]
  • [12] M. S. Lee, S.H. Nam, Bull. Korean Chem. Soc. 30, 1526 (2009) http://dx.doi.org/10.5012/bkcs.2009.30.7.1526[Crossref]
  • [13] Z. Hubicki, G. Wojcik, J. Hazard Mater. B136, 770 (2006) http://dx.doi.org/10.1016/j.jhazmat.2006.01.007[Crossref]
  • [14] L. C. Lin, R.S. Juang, Chem. Eng. J. 132, 205 (2007) http://dx.doi.org/10.1016/j.cej.2006.12.019[Crossref]
  • [15] A. Demirbas et al, J. Colloid Interface Sci. 282, 20 (2005) http://dx.doi.org/10.1016/j.jcis.2004.08.147[Crossref]
  • [16] Z. Hubicki, A. Wołowicz, M. Leszczyńska, J. Hazard Mater. 159, 280 (2008) http://dx.doi.org/10.1016/j.jhazmat.2008.02.017[Crossref]
  • [17] N. A. Oladoja, C.O. Aboluwoye, Y.B. Oladimeji, Turkish J. Eng. Env. Sci. 32, 303 (2008)
  • [18] V. Vadivelan, K. Vasanth Kumar, J. Colloid Interface Sci. 286, 90 (2005) http://dx.doi.org/10.1016/j.jcis.2005.01.007[Crossref]
  • [19] A. Sarı, M. Tuzen, J. Hazard. Mater. 152, 302 (2008) http://dx.doi.org/10.1016/j.jhazmat.2007.06.097[Crossref]
  • [20] A. U. Itodo, H.U. Itodo, J. Life Sci. 7, 31 (2010)
  • [21] Q. Sun, L. Yang, Water Research 37, 1535 (2003) http://dx.doi.org/10.1016/S0043-1354(02)00520-1[Crossref]
  • [22] V. Srihari, A. Das, Desalination 225, 220 (2008) http://dx.doi.org/10.1016/j.desal.2007.07.008[Crossref]
  • [23] X. Y. Pang, F. Gong, J. Chem. 5, 802 (2008)
  • [24] D.M. Gligor, A. Măicăneanu, In: J.P. Humphrey, D.E. Boyd (Ed.), Clay: Types, Properties and Uses (Nova Science Publishers, Inc., New York, 2011) 1

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-014-0504-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.