Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 3 | 312-317

Article title

Agglomeration of ZnS nanoparticles without capping additives at different temperatures

Content

Title variants

Languages of publication

EN

Abstracts

EN
ZnS nanoparticles were precipitated in diluted aqueous solutions of zinc and sulphide ions without capping additives at a temperature interval of 0.5–20°C. ZnS nanoparticles were arranged in large flocs that were disaggregated into smaller agglomerates with hydrodynamic sizes of 70–150 nm depending on temperature. A linear relationship between hydrodynamic radius (R
a) and temperature (T) was theoretically derived as R
a =652 - 2.11 T.The radii of 1.9–2.2 nm of individual ZnS nanoparticles were calculated on the basis of gap energies estimated from their UV absorption spectra. Low zeta potentials of these dispersions of −5.0 mV to −6.3 mV did not depend on temperature. Interactions between individual ZnS nanoparticles were modelled in the Material Studio environment. Water molecules were found to stabilize ZnS nanoparticles via electrostatic interactions.

Publisher

Journal

Year

Volume

12

Issue

3

Pages

312-317

Physical description

Dates

published
1 - 3 - 2014
online
21 - 12 - 2013

Contributors

author
  • VŠB-Technical University of Ostrava
  • VŠB-Technical University of Ostrava
author
  • Charles University in Prague, Faculty of Mathematics and Physics
  • VŠB-Technical University of Ostrava

References

  • [1] R.J. Hunter, Foundations of Colloid Science, 2nd edition (Oxford University Press, Oxford, 2009) 1–43
  • [2] G. Smith (Ed.), Nanoparticles: From Theory to Applications, 2nd edition (Wiley-VCH, Weinheim, 2010)
  • [3] K.C. Kwiatkowski, Ch.M. Lukehart, In: H.S. Nalwa (Ed), Nanostructured Materials and Technology (Academic Press, London, 2002)
  • [4] B.R. Cuenya, Thin Solid Films 518(12), 3127 (2010) http://dx.doi.org/10.1016/j.tsf.2010.01.018[Crossref]
  • [5] B. Tyagi, K.B. Sidhpuria, R.V. Jasra, In: H.S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Valencia, USA, 2011) Vol. 17, 479–546
  • [6] L.E. Brus, J. Phys. Chem. 90(12) 2255 (1986)
  • [7] K. Rajeshwar, N.R. de Tacconi, C.R. Chenthamarakshan, Chem. Mater. 13(9), 2765 (2001) http://dx.doi.org/10.1021/cm010254z[Crossref]
  • [8] O. Kozák, P. Praus, K. Kočí, M. Klementová, J. Colloid Interf. Sci. 352(2), 244 (2010) http://dx.doi.org/10.1016/j.jcis.2010.09.016[Crossref]
  • [9] P. Praus, R. Dvorský, P. Horínková, M. Pospíšil, P. Kovář, J. Colloid Interf. Sci. 377(1), 58 (2012) http://dx.doi.org/10.1016/j.jcis.2012.03.073[Crossref]
  • [10] Materials Studio Modeling Environment, Release 4.3 Documentation (Accelrys Software Inc., San Diego, 2003)
  • [11] J. W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, (Eds.), Handbook of Mineralogy (Mineralogical Society of America, Chantilly, 2013) http://www.handbookofmineralogy.org/ (accessed on 12th May 2013).
  • [12] A.K. Rappe, W.A. Goddard, J. Phys. Chem 95(8), 3358 (1991) http://dx.doi.org/10.1021/j100161a070[Crossref]
  • [13] H. Sun, D. Rigby, Spectrochim. Acta A 53(8), 1301 (1997) http://dx.doi.org/10.1016/S1386-1425(97)00013-9[Crossref]
  • [14] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114(25), 10024 (1992) http://dx.doi.org/10.1021/ja00051a040[Crossref]
  • [15] M. Tieman, Ö. Weiß, J. Hartikainen, F. Marlow, M. Lindén, Chem. Phys. Chem. 6(10), 2113 (2005) http://dx.doi.org/10.1002/cphc.200500163[Crossref]
  • [16] K. Dutta, S. Manna, S.K. De, Synth. Met. 159(3–4), 315 (2009) http://dx.doi.org/10.1016/j.synthmet.2008.09.003[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-013-0385-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.