Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 9 | 5 | 834-839

Article title

The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide

Content

Title variants

Languages of publication

EN

Abstracts

EN
During precipitation and calcination at 200°C nanocrystalline Co3O4 was obtained with average size crystallites of 13 nm and a well developed specific surface area of 44 m2 g−1. A small addition of a structural promoter, e.g. Al2O3, increases the specific surface area of the cobalt oxide (54 m2 g−1) and decreases the average size of crystallites (7 nm). Al2O3 inhibits the reduction process of Co3O4 by hydrogen. Reduction of cobalt oxide with aluminium oxide addition runs by equilibrium state at all the respective temperatures. The apparent activation energy of the recrystallization process of the nanocrystalline cobalt promoted by the aluminium oxide is 85 kJ mol−1. Aluminium oxide improves the thermostability of both cobalt oxide and the cobalt obtained as a result of oxide phase reduction. [...]

Publisher

Journal

Year

Volume

9

Issue

5

Pages

834-839

Physical description

Dates

published
1 - 10 - 2011
online
24 - 7 - 2011

Contributors

  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, 70-322, Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, 70-322, Szczecin, Poland
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, 70-322, Szczecin, Poland

References

  • [1] S. Weichel, P.J. Moller, Surf. Sci. 399, 219 (1998) http://dx.doi.org/10.1016/S0039-6028(97)00820-0[Crossref]
  • [2] F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, J. Electrochem. Soc. 143, 1532 (1996) http://dx.doi.org/10.1149/1.1836675[Crossref]
  • [3] M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 9, 1779 (1997) http://dx.doi.org/10.1039/a700125h[Crossref]
  • [4] A.M. Morales, C.M. Lieber, Science 279, 208 (1998) http://dx.doi.org/10.1126/science.279.5348.208[Crossref]
  • [5] C.A. Mirkin, Science 286, 2095 (1999) http://dx.doi.org/10.1126/science.286.5447.2095[Crossref]
  • [6] Y. Jang, H. Wang, Y. Chiang, J. Mater. Chem. 8, 2761 (1998) http://dx.doi.org/10.1039/a806653a[Crossref]
  • [7] S. Sakamato, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 80, 267 (1997) http://dx.doi.org/10.1111/j.1151-2916.1997.tb02824.x[Crossref]
  • [8] B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997) DOI:10.1021/cm970268y http://dx.doi.org/10.1021/cm970268y[Crossref]
  • [9] U. Morales, A. Camper, O. Solrzaferia, J. New Mater. Electrochem. System 89, 89 (1999)
  • [10] M. Sato, H. Hara, H. Kuritani, T. Nishide, Solar Energy Mater. Solar Cells 45, 43 (1997) http://dx.doi.org/10.1016/S0927-0248(96)00038-4[Crossref]
  • [11] R. Vijaya Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 12, 2301 (2000) DOI:10.1021/cm000166z http://dx.doi.org/10.1021/cm000166z[Crossref]
  • [12] J.-H. Smatt, C. Weidenthaler, J.B. Rosenholm, M. Linden, Chem. Mater. 18, 1443–1450 (2006) DOI: 10.1021/cm051880p http://dx.doi.org/10.1021/cm051880p[Crossref]
  • [13] G. Binotto, D. Larcher, A.S. Prakash, R.H. Urbina, M.S. Hegde, J.-M. Tarascon, Chem. Mater. 19, 3032 (2007) DOI: 10.1021/cm070048c http://dx.doi.org/10.1021/cm070048c[Crossref]
  • [14] E. Iglesia, Applied Catal. A. 161, 59 (1997) http://dx.doi.org/10.1016/S0926-860X(97)00186-5[Crossref]
  • [15] A.Y. Khodakow, W. Chu, P. Fongarland, Chem. Rev. 107, 1692 (2001) http://dx.doi.org/10.1021/cr050972v[Crossref]
  • [16] X. Gao, C.J. Huang, N.W. Zhang, J.H. Li, W.Z. Wenig, H.L. Wan, Catal. Today 131, 211 (2008) http://dx.doi.org/10.1016/j.cattod.2007.10.051[Crossref]
  • [17] D. Potoczna-Petru, L. Kępiński, Catal. Lette. 73, 1 (2001) http://dx.doi.org/10.1023/A:1009030413003[Crossref]
  • [18] R. Bechara, D. Balloy, J.-Y. Dauphin, J. Grimblot, Chem. Mater. 11, 1703 (1999) DOI: 10.1021/cm981015n http://dx.doi.org/10.1021/cm981015n[Crossref]
  • [19] Z. Lendzion-Bieluń, M. Podsiadły, U. Narkiewicz, W. Arabczyk, Rev. Adv. Mater. Sci. 12, 145 (2006) http://dx.doi.org/10.4028/www.scientific.net/AMR.11-12.145[Crossref]
  • [20] C.H. Bartholomew, Stud. Surf. Sci. Cat. 88, 1 (1994) http://dx.doi.org/10.1016/S0167-2991(08)62726-3[Crossref]
  • [21] J. Sehested, J.A.P. Gelten, S. Helveg, Appl. Catal. A 309, 237 (2006) http://dx.doi.org/10.1016/j.apcata.2006.05.017[Crossref]
  • [22] L. Diandra, M. Leslie-Pelecky, T. Bonder, E. Martin, M. Kirkpatrick, Y. Liu, X.Q. Zhang, D.R. Rieke, Chem. Mater. 10, 3732 (1998) DOI:10.1021/cm980530i http://dx.doi.org/10.1021/cm980530i[Crossref]
  • [23] Y. Ji, Z. Zhao, A. Duan, G. Jiang, J. Liu, J. Phys. Chem. C 113, 7186 (2009) DOI: 10.1021/jp8107057 http://dx.doi.org/10.1021/jp8107057[Crossref]
  • [24] W. Arabczyk, U. Narkiewicz, D. Moszyński, Langmuir, 15(18) 5785 (1999) http://dx.doi.org/10.1021/la981132x[Crossref]
  • [25] W. Arabczyk, I. Jasińska, K. Lubkowski, Reac. Kinet. and Catal. Lett. 83(2), 385 (2004) http://dx.doi.org/10.1023/B:REAC.0000046101.89184.b8[Crossref]
  • [26] W. Arabczyk, I. Jasińska, (2004), 13th Internat. Congress on Catalysis, 11–16 July 2004 a, Paris, France, (Congress Abstract book, France, 2004) 1–381
  • [27] W. Arabczyk, I. Jasińska, Z. Lendzion-Bieluń, Catal. Today (2010) DOI:10.1016/j.cattod.2010.09.016 [Crossref]
  • [28] J.P. Bournonville, G. Martino, Stud. Surf. Sci. Catal. 6, 159 (1980) http://dx.doi.org/10.1016/S0167-2991(08)65228-3[Crossref]
  • [29] C.H. Bartholomew, W. Sorenson, J. Catal. 81, 131 (1983) http://dx.doi.org/10.1016/0021-9517(83)90152-5[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-011-0059-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.