Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 1 | 349-383

Article title

Composition and variability of soil solutions as a measure of human impact on protected woodland areas

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
A study was made of the sandy and loamy soils of the woodland areas of the Wielkopolski National Park (Poland) affected by acid rain. The basic properties of the soils were determined, revealing their strong acidification, poor buffering power, and the possibility of aluminium release. An analysis was made of the content of soluble, exchangeable, organic, amorphous, and free forms of aluminium. The concentration of exchangeable aluminium exceeded that of the form dissolved in soil water several times to tens of times.In soil solutions Ca/Al ratios in some horizons show very low values that could induce a nutrient deficit. In the sandy profiles the ratio even drops below the critical level of 0.1. In the surface horizon the dominant cation at all the sites is the aluminium ion.An analysis of anions shows a dominance of sulphate and chloride ions. In autumn nitrites were recorded at all depth levels, while in spring only in the surface layers. The highest fluoride concentrations were found to occur in profiles situated the closest to the emission source of fluorine compounds. The markedly higher concentrations of ammonium than nitrate ions can lead to increased acidification and eutrophication of the soil.

Publisher

Journal

Year

Volume

5

Issue

1

Pages

349-383

Physical description

Dates

published
1 - 3 - 2007
online
1 - 3 - 2007

Contributors

author
  • Jeziory Ecological Station, Adam Mickiewicz University, 62-050, Mosina, P.O. Box 40, Poland

References

  • [1] M. Grzesiak and W. Domańska (Eds.): Environment 2005, Central Statistical Office, Warsaw, 2006.
  • [2] J. Dawidziuk (Ed.): Report on the status of forests in Poland 2004, The State Forest National Forest Holding, Warszawa, 2005, http://www.lp.gov.pl.
  • [3] T. Staszewski: Assessment of the threat of the environment of Wielkopolski National Park by air pollution, Manuscript, Institute for Ecology of Industrial Areas, Katowice, 1999, in Polish.
  • [4] B. Walna, S. Drzymała and J. Siepak: “The impact of acid rain on potassium and sodium status in typical soils of the Wielkopolski National Park”, Water Air Soil Poll., Vol. 121, (2000), pp. 31–41. http://dx.doi.org/10.1023/A:1005239229352[Crossref]
  • [5] B. Walna, J. Siepak and S. Drzymała: “Soil degradation in the Wielkopolski National Park (Poland) as an effect of acid rain simulation”, Water Air Soil Poll., Vol. 130, (2001), pp. 1727–1732. http://dx.doi.org/10.1023/A:1013995500326[Crossref]
  • [6] B. Walna, Ż. Polkowska, S. Małek, K. Mędrzycka, J. Namieśnik and J. Siepak: “Tendencies of change in the chemistry of precipitation at three monitoring stations 1996–1999”, Pol. J. Environ. Stud., Vol. 12(4), (2003), pp. 467–472.
  • [7] B. Walna, I. Kurzyca and J. Siepak: “Local effects of pollution on chemical composition of precipitation in areas differing in human impact”, Pol. J. Environ. Stud., Vol. 13(Suppl.), (2004), pp. 36–42.
  • [8] B. Walna and I. Kurzyca: “Deposition of atmospheric pollution at several sites in Poland differing in the level of human impact”, Environ. Monit. Asses., in preparation.
  • [9] B. Walna, I. Kurzyca and J. Siepak: “Variations in the fluoride level in precipitation in a human impact region”, Water Air Soil Poll., (2006), in press.
  • [10] B. Walna, J. Siepak, I. Skiera and B. Waraksa: “pH of soils in Wielkopolski National Park”, Morena, Vol. 3, (1995), pp. 67–73.
  • [11] B. Walna B., S. Drzymała and J. Siepak: “The impact of acid rain on calcium and magnesium status in typical soils of the Wielkopolski National Park”, Sci. Total Environ., Vol. 220, (1998), pp. 115–120. http://dx.doi.org/10.1016/S0048-9697(98)00240-X[Crossref]
  • [12] J. Siepak, B. Walna and S. Drzymała: “Speciation forms of aluminium released under the effect of acid rain,” Pol. J. Environ. Stud., Vol. 8, (1999), pp. 55–58.
  • [13] B. Walna, J. Siepak, L. Domka, S. Drzymała and T. Sobczyński: “Limiting the effect of acid rain on leaching aluminium from the soil by addition of limestone”, Zeszyty Problemowe Postępów Nauk Rolniczych, Vol. 482, (2002), pp. 529–534 (in Polish).
  • [14] G.E. Likens, C.T. Driscoll and D.C. Buso: “Long-term effects of acid rain: Response and recovery of a forest ecosystem”, Science, Vol. 272, (1996), pp. 244–246. http://dx.doi.org/10.1126/science.272.5259.244[Crossref]
  • [15] L.E. Rustad, I.J. Fernandez, R.D. Fuller, M.B. David, S.C. Nodvin and W.A. Halterman: “Soil solution response to acidic deposition in a northern hardwood forest”, Agr. Ecosyst. Environ., Vol. 47, (1993), pp. 117–134. http://dx.doi.org/10.1016/0167-8809(93)90106-Y[Crossref]
  • [16] A. Lukeville, M. Bredemeier and B. Ulrich: “Input-output relations of major ions European forest ecosystems”, Agr. Ecosyst. Environ., Vol. 47, (1993), pp. 175–184. http://dx.doi.org/10.1016/0167-8809(93)90110-B[Crossref]
  • [17] J. Mulder, J.J.M. van Grinsven and N. van Breemen: “Impacts of acid atmospheric deposition on woodland soils in the Netherlands; III Aluminium chemistry”, Soil Sci. Soc. Am. J., Vol. 51(6), (1987), pp. 1640–1646. http://dx.doi.org/10.2136/sssaj1987.03615995005100060042x[Crossref]
  • [18] U. Pokojska: “The forest soil resistance to acidification”, Postępy Techniki w Leśnictwie, Vol. 56, (1995), pp. 33–37 (in Polish).
  • [19] U. Pokojska: “Acidification of forest soil - the state of knowledge and perspectives of progress in the field”, Zeszyty Problemowe Postępów Nauk Rolniczych, Vol. 456, (1998), pp. 63–70 (in Polish).
  • [20] D. Berggren: “Speciation and mobilization of aluminium and cadmium in podzols and cambisols of S. Sweden”, Water Air Soil Poll., Vol. 62, (1992), pp. 125–56. http://dx.doi.org/10.1007/BF00478457[Crossref]
  • [21] M.E. Andersson: “Aluminium toxicity as a factor limiting the distribution of Allium ursinum (L.)”, Ann. Bot.-London, Vol. 72, (1993), pp. 607–611. http://dx.doi.org/10.1006/anbo.1993.1151[Crossref]
  • [22] J. Herrmann: “Aluminium is harmful to benthic invertebrates in acidified waters but at what threshold?”, Water Air Soil Poll., Vol. 130, (2001), pp. 837–842. http://dx.doi.org/10.1023/A:1013815920101[Crossref]
  • [23] E. Hornstrom, A. Harbom, F. Edberg and C. Andren: “The influence of pH on aluminium toxicity in the phytoplankton species Monoraphidium Dybowski and M. Griffithii”, Water Air Soil Poll., Vol. 85, (1995), pp. 817–822. http://dx.doi.org/10.1007/BF00476930[Crossref]
  • [24] P. Illmer, U. Obertegger and F. Schinner: “Microbiological properties in acidic forest soils with special consideration of KCl extractable Al”, Water Air Soil Poll., Vol. 148, (2003), pp. 3–14. http://dx.doi.org/10.1023/A:1025422229468[Crossref]
  • [25] U. Pokojska: “Different aspects of aluminium toxicity to plants”, Roczniki Gleboznawcze, Vol. 45(1/2), (1994), pp. 109–117 (in Polish).
  • [26] J.P. Boudot, O. Maitat, D. Merlet and J. Rouiller: “Soil solutions and surface water analysis in two contrasted watersheds by acid deposition, Vosges mountains, NE France: Interpretations in terms of Al impact and nutrient imbalance”, Chemosphere, Vol. 41, (2004), pp. 1419–1429. http://dx.doi.org/10.1016/S0045-6535(99)00545-7[Crossref]
  • [27] V. Brahy, H. Titeux and B. Delvaux: “Incipient podzolization and weathering caused by complexation in a forest Cambisol on loess as revealed by soil solution study”, Eur. J. Soil Sci., Vol. 51, (2000), pp. 475–484. http://dx.doi.org/10.1046/j.1365-2389.2000.00324.x[Crossref]
  • [28] P. Kram., J. Hruska, B.S. Wenner, C.T. Driscoll and C.E. Johnson: “The biogeochemistry of basic cations in two forest catchments with contrasting lithology in the Czech Republic”, Biogeochemistry, Vol. 37, (1997), pp. 173–202. http://dx.doi.org/10.1023/A:1005742418304[Crossref]
  • [29] G. Matschonat and R. Vogt: “Significance of the total cation concentration in acid forest soils for the solution composition and saturation of exchange sites”, Geoderma, Vol. 84, (1998), pp. 289–307. http://dx.doi.org/10.1016/S0016-7061(98)00009-3[Crossref]
  • [30] E. Maztner, M. Pijpers, W. Holland and B. Manderscheid: “Aluminium in soil solutions in forests soils: influence of water flow and soil aluminium pools”, Soil. Sci. Soc. Am..J., Vol. 62, (1998), pp. 445–454. http://dx.doi.org/10.2136/sssaj1998.03615995006200020022x[Crossref]
  • [31] C.D. Barton, A.D. Karathanasis and G. Chalfant: “Influence of acidic atmospheric deposition on soil solution composition in the Daniel Boone National Forest, Kentucky, USA”, Environ. Geol., Vol. 41, (2002), pp. 672–682. http://dx.doi.org/10.1007/s00254-001-0450-6[Crossref]
  • [32] P.A.W. Hees, E. Tipping and U.S. Lundstrom: “Aluminium speciation in forest soil solution - modelling the contribution of low molecular weight organic acids”, Sci. Total Environ., Vol. 278, (2001), pp. 215–229. http://dx.doi.org/10.1016/S0048-9697(01)00653-2[Crossref]
  • [33] L.G. Wesselink, J. Mulder and E. Matzner: “Modelling seasonal and long term dynamics of anions in an acid forest soil, Solling, Germany”, Geoderma, Vol. 64, (1994), pp. 21–39. http://dx.doi.org/10.1016/0016-7061(94)90087-6[Crossref]
  • [34] Ż. Polkowska, A. Astel, B. Walna, S. Małek, K. Mędrzycka, T. Górecki, J. Siepak and J. Namieśnik: “Chemometric analysis of rainwater and throughfall at several sites in Poland”, Atmos. Environ., Vol. 39, (2005), pp. 837–855. http://dx.doi.org/10.1016/j.atmosenv.2004.10.026[Crossref]
  • [35] B. Walna and J. Siepak: “Research on the variability of phisical-chemical parameters characterizing acidic atmospheric precipitation at the Jeziory Ecological Station in the Wielkopolski National Park (Poland)”, Sci. Total Environ., Vol. 239, (1999), pp. 173–187. http://dx.doi.org/10.1016/S0048-9697(99)00303-4[Crossref]
  • [36] Polish Standards, PN-R-04033 1998 (in Polish).
  • [37] A. Mocek, S. Drzymała and P. Maszner: Genesis, analysis and classification of soils, Wydawnictwo Akademii Rolniczej, Poznań, 2000 (in Polish).
  • [38] P. Buurman, B. van Lagen and E.J. Velthorst (Eds.): Manual for Soil and Water Analysis, Backhuys Publishers, Leiden, 1996.
  • [39] Soil Survey Laboratory Methods Manual, Soil Survey Investigations, Report No.42, US Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Washington, 1996.
  • [40] J.F. Lopez-Sanchez, A. Sahuquillo, G. Rauret, M. Lachica, E. Barahona, A. Gomez, A.M. Ure, H. Muntau and P. Quevauviller: “Extraction procedures for soil analysis”, In: P. Quevauviller (Ed.): Methodologies for soil and sediment fractionation studies, The Royal Society of Chemistry, Cambridge, 2002, pp. 28–65. http://dx.doi.org/10.1039/9781847551412-00028[Crossref]
  • [41] G. Porębska and J. Mulder: “Effect of long-term nitrogen fertilization on soil aluminium chemistry”, J. Ecol. Chem., Vol. 3, (1994), pp. 269–280.
  • [42] B. Walna, W. Spychalski and J. Siepak: “Assessment of potentially reactive pools of aluminium in poor forest soils using two methods of fractionation analysis”, J. Inorg. Biochem., Vol. 99(9), (2005), pp. 1807–1816. http://dx.doi.org/10.1016/j.jinorgbio.2005.06.026[Crossref]
  • [43] J.A. McKeague, J.E. Brydon and N.M. Miles: “Differentiation of forms of extractable iron and aluminium in soils”, Soil Sci. Soc. Amer. Proc., Vol. 35, (1971), pp. 33–38. http://dx.doi.org/10.2136/sssaj1971.03615995003500010016x[Crossref]
  • [44] A.S.R. Juo and E.J. Kamprath: “Copper chloride extractant for estimating the potentially reactive aluminium pool in acid soils”, Soil Sci. Am. J., Vol. 43, (1979), pp. 35–38. http://dx.doi.org/10.2136/sssaj1979.03615995004300010006x[Crossref]
  • [45] O. Drabek, L. Boruvka, L. Mladkowa, and M. Kocarek: “Possible way of aluminium speciation in forest soils”, J. Inorg. Biochem., Vol. 97, (2003), pp. 8–15. http://dx.doi.org/10.1016/S0162-0134(03)00259-9[Crossref]
  • [46] D. Berggren and J. Mulder: “The role of organic matter in controlling aluminium solubility in acidic mineral soil horizons”, Geochim. Cosmochim. Ac., Vol. 59(20), (1995), pp. 4167–4180. http://dx.doi.org/10.1016/0016-7037(95)94443-J[Crossref]
  • [47] A. Singer and P.M. Huang: “Humic acid effect on aluminium interlayering in montmorillonite”, Soil Sci. Soc. Am. J., Vol. 57, (1993), pp. 271–279. http://dx.doi.org/10.2136/sssaj1993.03615995005700010046x[Crossref]
  • [48] L. Boruvka, J. Kozak and O. Drabek: “Influence of some soil properties on the content of selected Al forms in the soil of the dumpsite Litov”, Roslinna Vyroba, Vol. 45(1), (1999), pp. 9–15.
  • [49] E. Alvarez, M.L. Monterosso and F. Macros: “Aluminium fractionation in Galician (NW Spain) forest soil as related to vegetation and parent material”, Forest Ecol. Manag., Vol. 166, (2002), pp. 193–206. http://dx.doi.org/10.1016/S0378-1127(01)00658-2[Crossref]
  • [50] D. Berggren and J. Mulder: “The role of organic matter in controlling aluminium solubility in acidic mineral soil horizons”, Geochim. Cosmochim. Ac., Vol. 59(20), (1995), pp. 4167–4180. http://dx.doi.org/10.1016/0016-7037(95)94443-J[Crossref]
  • [51] U.S. Lundstrom, N. van Breemen and D. Bain: “The podzolization process. A review”, Geoderma, Vol. 94, (2000), pp. 91–107. http://dx.doi.org/10.1016/S0016-7061(99)00036-1[Crossref]
  • [52] J. Mulder, H.A. de Wit, H.W.J. Boonen and L.R. Bakken: “Increased levels of aluminium in forest soils: effects on the stores of soil organic carbon”, Water Air Soil Poll., Vol. 130, (2001), pp. 989–994. http://dx.doi.org/10.1023/A:1013987607826[Crossref]
  • [53] J. Lyon and W. Sharpe: “An assessment of the Ca/Al ratios of selected Pensylvania forest soils”, Water Air Soil Poll., Vol. 109, (1999), pp. 53–65. http://dx.doi.org/10.1023/A:1005042426912[Crossref]
  • [54] A. Badora: “Unfavourable influence of mobilie aluminium in creal plants”, Zeszyty Problemowe Postępów Nauk Rolniczych, Vol. 413, (1994), pp. 9–13 (in Polish).
  • [55] M. Kotowski, E. Wieteska, L. Pawłowski and Z. Kozak: The occurrence of different species of aluminium in selected elements of the natural environment in Poland, Państwowa Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska, Warszawa, 1994 (in Polish).
  • [56] P. van Hees, U.S. Lundstrom and R. Giesler: “Low molecular weight organic acids and their Al-complexes in soil solution-composition, distribution and seasonal variartion in the three podzolized soils”, Geoderma, Vol. 94, (2000), pp. 173–200. http://dx.doi.org/10.1016/S0016-7061(98)00140-2[Crossref]
  • [57] P. van Hees and U.S. Lundstrom: “Equilibrium models of aluminium and iron complexation with different organic acids in soil solution”, Geoderma, Vol. 94, (2000), pp. 201–221. http://dx.doi.org/10.1016/S0016-7061(98)00139-6[Crossref]
  • [58] P.O. Brandberg and M. Simonsson: “Aluminium and iron chemistry in the O horizon changed by shift in tree”, Biogeochemistry, Vol. 63, (2003), pp. 207–228. http://dx.doi.org/10.1023/A:1023303023695[Crossref]
  • [59] B. Walna, J. Biernacka and J. Siepak: “Soil degradation: chemical and mieralogical study”, In: Proceedings of the Conference, Jeziory Ecological Station, 2004, pp. 125–128 (in Polish).
  • [60] U. Skyllberg, K. Raulund-Rasmussen and O.K. Borggaard: “pH buffering in acidic soils developed under Picea abies and Quercus robur-effects of soil organic matter, adsorbed cations and soilvsolution ionic strength”, Biogeochemistry, Vol. 56, (2001), pp. 51–74. http://dx.doi.org/10.1023/A:1011988613449[Crossref]
  • [61] K. Kaizer and W. Zech: “Defects in estimation in humus complexes of podzolic soils by pyrophosphate extraction”, Soil Sci., Vol. 161, (1996), pp. 145–149.
  • [62] E. Lydersen: “The solubility and hydrolysis of aqueous aluminium hydroxides in dilute fresh water at different temperatures”, Nord. Hydrol, Vol. 21, (1990), pp. 195–204.
  • [63] C.I. Grieve, I.D.L. Foster and A.D. Carter: “Spatial and temporal variations in concentrations of tree ions in solutions extracted from a woodland soil”, Catena, Vol. 11, (1984), pp. 305–312. [Crossref]
  • [64] G. Raben., H. Andreae and F. Symossek: “Consequences of reduced immisions on the ecochemical conditions of forest ecosystems in Saxony (Germany)”, Chemosphere, Vol. 36(4–5), (1998), pp. 1007–1012. http://dx.doi.org/10.1016/S0045-6535(97)10163-1[Crossref]
  • [65] M.J.F. Sanjurio, V.F. Vega and E. Garcia-Rodeja: “Atmospheric deposition and ionic concentration in soils under pine and deciduous forests in the river Sor catchment (Galicia NW Spain)”, Sci. Total Environ., Vol. 204, (1997), pp. 125–134. http://dx.doi.org/10.1016/S0048-9697(97)00157-5[Crossref]
  • [66] C.S. Cronan and D.F. Grigal: “Use of Ca/Al ratios as indicators of stress in forest ecosystems”, J. Environ. Qual., Vol. 24, (1995), pp. 209–226. http://dx.doi.org/10.2134/jeq1995.242209x[Crossref]
  • [67] M.F. Hovmand and J. Bille-Hansen: “Atmospheric input to Danish spruce forests and effects on soil acidification and forest growth based on 12 years measurements”, Water Air Soil Poll., Vol. 116, (1999), pp. 75–88. http://dx.doi.org/10.1023/A:1005286308200[Crossref]
  • [68] H. Smal and M. Misztal: “Soil solution chemistry in the profiles of forest and arable light textured soils, SE Poland”, Appl. Geochem., Vol. 11, (1996), pp. 81–85. http://dx.doi.org/10.1016/0883-2927(95)00095-X[Crossref]
  • [69] I. Brunner, D. Rigling, S. Egli and P. Blaster: “Response of Norway spruce seedlings in relation to chemical properties of forest soils”, Forest Ecol. Manag., Vol. 116, (1999), pp. 71–81. http://dx.doi.org/10.1016/S0378-1127(98)00445-9[Crossref]
  • [70] U.W. de Vries, E.E.J.M. Leeters and C.M.A. Hendrics: “Effcts of acid deposition on Dutch forest ecosystems”, Water Air Soil Poll., Vol. 85(3), (1995), pp. 1063–1068. http://dx.doi.org/10.1007/BF00477122[Crossref]
  • [71] T.B. Kinraide and D.R. Parker: “Non-phytotoxicity of the aluminium sulphate ion”, Physiol. Plant., Vol. 71, (1987), pp. 207–212. http://dx.doi.org/10.1111/j.1399-3054.1987.tb02869.x[Crossref]
  • [72] D.R. Parker, T.B. Kinrade and L.W. Zelazny: “Aluminium speciation and phytotoxicity in dilute hydroxy-aluminium solutions”, Soil Sci. Soc. Am. J., Vol. 52, (1988), pp. 438–444. http://dx.doi.org/10.2136/sssaj1988.03615995005200020025x[Crossref]
  • [73] J.M. Horner and J.N.B. Bell: “Effects of fluoride and acidity on early plant growth”, Agr. Ecosyst. Environ., Vol. 52, (1995), pp. 205–211. http://dx.doi.org/10.1016/0167-8809(94)00533-K[Crossref]
  • [74] J.N. Cape, D. Fowler and A. Davison: “Ecological effects of sulfur dioxide, fluorides and minor air pollutants: recent trends and research needs”, Environ. Int., Vol. 29, (2003), pp. 201–211. http://dx.doi.org/10.1016/S0160-4120(02)00180-0[Crossref]
  • [75] C. Haidouti: “Effects of fluoride pollution on the mobilization and leaching of aluminium in soils”, Sci. Total Environ., Vol. 166, (1995), pp. 157–160. http://dx.doi.org/10.1016/0048-9697(95)04525-6[Crossref]
  • [76] J.G.M. Roelofs: “The effect of airborne sulphur and nitrogen deposition on aquatic and terrestial heathland vegetation”, Experientia, Vol. 42, (1986), pp. 372–377. http://dx.doi.org/10.1007/BF02118618[Crossref]
  • [77] J. van Breemen, J. Mulder and C.T. Driscoll: “Acidification and alkalinization of soils”, Plant Soil, Vol. 75, (1983), pp. 283–308. http://dx.doi.org/10.1007/BF02369968[Crossref]
  • [78] B. Walna and I. Kurzyca: “Deposition of precipitation-borne atmospheric pollution as a measure of environmental improvement - a case study of a university station in western Poland”, Environ. Monit. Assess., in press.
  • [79] G. Porębska: Usefulness of the chemical composition of soil solutions in the evaluation of the quality of forest soils, Institute of Environmental Protection, Warszawa, 2003, in Polish.
  • [80] L.G. Wesselink, J. Mulder and E. Matzner: “Modelling seasonal and long term dynamics of anions in an acid forest soil, Solling, Germany”, Geoderma, Vol. 64, (1994), pp. 21–39. http://dx.doi.org/10.1016/0016-7061(94)90087-6[Crossref]
  • [81] E. Alvarez, A. Petez and R. Calvo: “Aluminium speciation in surface waters and soil solutions in areas of sulphide mineralization in Galicia (NW Spain)”, Sci. Total Environ., Vol. 133, (1993), pp. 17–37. http://dx.doi.org/10.1016/0048-9697(93)90111-I[Crossref]
  • [82] E.H. Larsson, J. Knulst and O. Westling: “Deposition of acidifying compounds in Sweden”, Water Air Soil Poll., Vol. 85, (1995), pp. 2271–2276. http://dx.doi.org/10.1007/BF01186172[Crossref]
  • [83] EMEP/CCC Report 3/2005. Data Report 2003 Acidifying and eutrophying compounds, Norwegian Institute for Air Research, Kjeller, Norway, 2005, http://www.nilu.no.project/CCC/reports/index.html.
  • [84] T. Śnieżek: Monitoring of background air pollution in Poland for the purposes of EMEP and GAW/WMO, Synthetic Report 2003, Institute of Meteorology and Water, Warszawa, 2004, http://www.gios.gov.pl/dokumenty/raport_s.pdf.
  • [85] G. Kashulina, C. Reimann, T.E. Finne, P. Caritat and H. Niskavaara: “Factor influencing nitrate concentration in rain, stream water, ground water and podzol profiles of eight small catchments in the European Arctic”, Environ. Pollut., Vol. 102, (1998), pp. 559–568. http://dx.doi.org/10.1016/S0269-7491(98)80084-5[Crossref]
  • [86] C. Bini and F. Bresolin: “Soil acidification by acid rain in forest ecosystems: A case study in northern Italy”, Sci. Total Environ., Vol. 222, (1998), pp. 1–15. http://dx.doi.org/10.1016/S0048-9697(98)00239-3[Crossref]
  • [87] A. Rudebeck and T. Persson: “Nitrification in organic and mineral soil layers in coniferous forests in respons to acidity”, Environ. Poll., Vol. 102, (1998), pp. 377–383. http://dx.doi.org/10.1016/S0269-7491(98)80057-2[Crossref]
  • [88] N. van Breemen and H.F.G. van Dijk: “Ecosystems effects of atmospheric deposition of nitrogen in the Netherlands”, Environ. Pollut., Vol. 54, (1988), pp. 249–274. http://dx.doi.org/10.1016/0269-7491(88)90115-7[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-006-0051-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.