Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2007 | 5 | 1 | 271-290

Article title

Application of pyrolysis-capillary gas chromatography with NPD detection in thermal degradation of polyphosphazenes study

Content

Title variants

Languages of publication

EN

Abstracts

EN
Polyphosphazenes represent a unique class of polymers with a backbone composed of alternating phosphorous and nitrogen atoms. The thermal behaviour and decomposition of a variety of polyphosphazenes depends on the type of side groups present. Especially those that bear aryloxy side groups, possess a high temperature stability as well as excellent flame resistance. Pyrolysis-capillary gas chromatography has been used in a study of three polyphosphazene samples for thermal stability characterisation. Degradation products were detected with three single detectors for flame ionisation (FID), nitrogen-phosphorous sensitivity (NPD) and mass spectrometry (MSD) at different pyrolysis temperatures ranging from 300°C up to 800°C. The NPD responses for phosphorous or nitrogen fragments of polyphosphazenes have been used for the construction of degradation product schemes and the examination of the thermal stability of the polyphosphazene’s backbone. Partial identification of the degradation products present in the gaseous phase was achieved by MSD. The polyphosphazenes thermal degradation conversion rates were at a maximum at 450–500°C. At various pyrolysis temperatures, the calculated N/P peak area ratio is a function of the degree of polyphosphazene-N=P-chain degradation, and reflective of the nitrogen - phosphorous detector sensitivity. NPD proved to be suitable tool for characterization of polyphospazene thermal stability.

Keywords

Publisher

Journal

Year

Volume

5

Issue

1

Pages

271-290

Physical description

Dates

published
1 - 3 - 2007
online
1 - 3 - 2007

Contributors

  • Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany
  • Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, D-48149, Münster, Germany
  • Faculty of Sciences, Department of Physical Chemistry, University of P.J.Šafárik, 04154, Košice, Slovakia
  • Faculty of Chemical Technology, Department of Organic Technology, Institute of Chemical Technology Prague, 16628, Prague 6 - Dejvice, Czech Republic
  • Faculty of Chemical Technology, Department of Organic Technology, Institute of Chemical Technology Prague, 16628, Prague 6 - Dejvice, Czech Republic
author
  • Institute for Energy, Directorate-General Joint Research Centre, European Commission, NL-1755 ZG, Petten, The Netherlands

References

  • [1] M. Gleria and R. DeJaeger: “Polyphosphazenes: a review“, Top Curr. Chem., Vol. 250, (2005), pp. 165–251.
  • [2] L. Goldfarb, N.D. Hann, R.L. Dieck and D.C. Messersmith: “Thermal degaradtion of polybis(p-Isopropylphenoxy)-phosphazene“, J. Polymer Sci. Polym. Chem., Vol. 16(7), (1978), pp. 1505–1515. http://dx.doi.org/10.1002/pol.1978.170160705[Crossref]
  • [3] S.J. Maynard, T.R. Sharp and J.F. Haw: “Thermal degradation chemistry of poly(diphenoxyphosphazene)“, Macromolecules, Vol. 24, (1991), pp. 2794–2799. http://dx.doi.org/10.1021/ma00010a024[Crossref]
  • [4] M.A. Soto-Oviedo, R.S. Lehrie, I.W. Parsons and M.A. Se Paoli: “Thermal degradation mechanism and rate constants of the thermal degradation of poly(epichlorhydrin-co-ethylene oxide), deduced from pyrolysis-GC-MS studies“, Polymer Degradation and Stability, Vol. 81(3), (2003), pp. 463–472. http://dx.doi.org/10.1016/S0141-3910(03)00131-9[Crossref]
  • [5] A. Ballistreri, S. Foti, G. Montaudo, S. Lora and G. Pezzin: “Mass spectrometric characterisation and thermal decomposition mechanism of some poly(organophosphazenes)“, Die Makromolekulare Chemie, Vol. 182(5), (2003), pp. 1319–1326. http://dx.doi.org/10.1002/macp.1981.021820503[Crossref]
  • [6] Ch.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf and F.F. Stewart: “Characterization of 2-(2-methoxyethoxy)ethanol - substituted phosphazene polymers using pervaporation, solubility parameters, and sorption studies“, J. Membr. Sci., Vol. 186, (2001), pp. 249–256. http://dx.doi.org/10.1016/S0376-7388(00)00690-6[Crossref]
  • [7] Ch.J. Orme and F.F. Stewart: “Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes“, J. Membr. Sci., Vol. 253(1), (2005), pp. 243–249. http://dx.doi.org/10.1016/j.memsci.2004.12.034[Crossref]
  • [8] L.E. Starannikova, D.R. Tur, V.V. Teplyakov and N.A. Platé: “Gas separation properties of poly[bis(trifluoroethoxyphosphazene)]“, Polym. Sci., Vol. 36(11), (1994), pp. 1610–1615.
  • [9] Y.M. Sun, Ch.H. Wu and A. Lin: “Permeation and sorption properties of benzene, cyclohexane, and n-hexane vapors in poly[bis(2,2,2-trifluorethoxyphosphazene)] (PTFEP) membranes“, Polymer, Vol. 47, (2006), pp. 602–610. http://dx.doi.org/10.1016/j.polymer.2005.11.063[Crossref]
  • [10] C.M. Ambler, A.E. Maher, R.M. Wood, H.R. Allcock, E. Chalkova and S.N. Lvov: “Novel proton conductive polyphosphazenes for use as fuel cell materials“, Abstracts of Papers of the American Chemical Society, 226:U514–U514 360 - PMSE Part 2 Sept. 2003.
  • [11] E. Chalkova, Z. Xiangyang, K. Ambler, M.A. Hofmann, J.A. Weston and H.R. Allcock: “Sulfonimide polyphosphazene - based H2/O2 fuel cells“, Electrochem. Solid St. Lett., Vol. 5(10), (2002), pp. A221–A222. http://dx.doi.org/10.1149/1.1504901[Crossref]
  • [12] P. Jannasch: “Recent developments in high-temperature proton conducting polymer electrolyte membranes“, Curr. Opin. Colloid In. Sci., Vol. 8, (2003), pp. 96–102. http://dx.doi.org/10.1016/S1359-0294(03)00006-2[Crossref]
  • [13] K. Attra: “Pesticide analysis by GC/ECD/NPD&FID”, Application Note GC3006, Buck Scientific, 58 Fort Point Street, East Norwalk, CT 06855, U.S.A., www.bucksci.com.
  • [14] M. Morello, L. Previale and P. Quaglino: “Gas chromatographic system equipped with a mass detector and a selective nitrogen-phosphorous detector operating simultaneously in the nalysis of pesticide residues“, J. Chromatogr. A, Vol. 740, (1996), pp. 263–271. http://dx.doi.org/10.1016/0021-9673(96)00133-1[Crossref]
  • [15] A.A. Johnson and D.G. Burleson: “Nitrate analysis in biological fluids by gas chromatography - nitrogen phosphorous detection“, Anal. Biochemistry. Vol. 236, (1996), pp. 331–337. http://dx.doi.org/10.1006/abio.1996.0175[Crossref]
  • [16] P. Tollbäck, H. Carlsson and C. Östamnn: “Coupled LC-GC-NPD for determination of carbazole - type PANH and its application to personal exposure measurement“, J. High Resol. Chromatogr., Vol. 23(2), (2000), pp. 131–137. http://dx.doi.org/10.1002/(SICI)1521-4168(20000201)23:2<131::AID-JHRC131>3.0.CO;2-5[Crossref]
  • [17] W. Onkenhout, P.P.J. Mulder, P.J. Boogaard, W. Buijs and, N.P.E. Vermeulen: “Identification and quantitative determination of mercapturic acids formed from Z-and E-1,3-dichloropropene by the rat, using gas chromatography with three different detection techniques“, Arch. Toxicol., Vol. 59(4), (1986), pp. 235–241. http://dx.doi.org/10.1007/BF00290544[Crossref]
  • [18] M.C. Pablos Espada, A. Garrido Frenich, J.L. Martinez Vidal and P. Parrilla: “Comparative study using ECD, NPD, and MS/MS chromatographic techniques in the determination of pesticides in wetland waters“, Anal. Lett., Vol. 34(4), (2001), pp. 597–614. http://dx.doi.org/10.1081/AL-100002598[Crossref]
  • [19] N.H. Jourdil, P.D. Fontanille and G.M. Bessard: “Concurrent determination of second-generation anti-depressants in plasma by using gas chromatography with nitrogen-phosphorus detection“, Clin. Chem., Vol. 43, (1997), pp. 2209–2210.
  • [20] H. Snijders, H.G. Janssen and C. Cramers: “Design and optimization of a novel type nitrogen phosphorous detector for capillary gas chromatography“, J. Chromatogr. A., Vol. 732, (1996), pp. 51–61. http://dx.doi.org/10.1016/0021-9673(95)01243-5[Crossref]
  • [21] H. Seno, H. Hattori, S. Kurono, T. Yamada, T. Kumazawa, A. Ishii and O. Suzuki: “Gas chromatography with surface ionization detection: a highly sensitive method for determining underivatized codeine and dihydrocodeine in body fluids“, J. Chromatogr. B, Vol. 673, (1995), pp. 189–195. http://dx.doi.org/10.1016/0378-4347(95)00275-1[Crossref]
  • [22] R.E. Singler, N.S. Schneider and G.L. Hagnauer: “Polyphosphazenes - synthesis, properties and applications“, Polym. Eng. Sci., Vol. 15(5), (1975), pp. 321–338. http://dx.doi.org/10.1002/pen.760150502[Crossref]
  • [23] I.S. Krull, M. Swartz and J.N. Driscoll: “Multiple Detection in Gas Chromatography“, Adv. Chromatogr., Vol. 24, (1984), pp. 247–316.
  • [24] G. Stoev and A. Mihailova: “Multiple detector responses or multiple retention times: What is more informative for gas chromatography peak identification“, J. Chromatogr. A, Vol. 1047(2), (2004), pp. 263–269.
  • [25] U. Caruso, B. Fowler, G. Minniti and C. Romano: “Determination of tryptophan and ten of its metabolites in a single analysis by high-performance liquid chromatography with multiple detection“, J. Chromatogr. A, Vol. 661(1–2), (1994), pp. 101–104. http://dx.doi.org/10.1016/0021-9673(94)85181-6[Crossref]
  • [26] www.oianalytical.com
  • [27] J. Paulsdorf, M. Burjanadze, K. Hagelschur and H.D. Wiemhöfer: “Ionic conductivity in polyphosphazene polymer electrolytes prepared by the living cationic polymerization“, Solid St. Ion., Vol. 169(1–4), (2004), pp. 25–33. http://dx.doi.org/10.1016/j.ssi.2004.01.012[Crossref]
  • [28] J. Paulsdorf, N. Kaskhedikar, M. Burjanadze, S. Obeidi, N. A. Stolwijk, D. Wilmer and H.-D. Wiemhöfer: “Synthesis and ionic conductivity of polymer electrolytes based on a polyphosphazene with short side groups“, Chem. Mat., Vol. 18(5), (2006), pp. 1281–1288. http://dx.doi.org/10.1021/cm051556u[Crossref]
  • [29] J.R. Mac Callum and J. Tanner: “The thermal degradtion of some polyphosphazenes“, J. Macromol. Sci. Chem., Vol. A4(2), (1970), pp. 481–491. http://dx.doi.org/10.1080/00222337008063158[Crossref]
  • [30] D.P. Serrano, J. Aguado, J.M. Escola, J.M. Rodriguez and G. San Miguel: “An investigation into the catalytic cracking of LDPE using Py-GC/MS“, J. Anal. Appl. Pyrol., Vol. 74(1–2), (2005), pp. 370–378. http://dx.doi.org/10.1016/j.jaap.2004.11.026[Crossref]
  • [31] R.A. Garcia, D.P. Serrano and D. Otero: “Catalytic cracking of HDPE over hybrid zeolitic-mesoporous materials“, J. Anal. Appl. Pyrol., Vol. 74(1–2), (2005), pp. 379–386. http://dx.doi.org/10.1016/j.jaap.2004.11.002[Crossref]
  • [32] R. Oriňáková: “The influence of iron powder microstructure on its electrolytical coating with nickel“, Surf. Coat. Technol., Vol. 162, (2003), pp. 54–60. http://dx.doi.org/10.1016/S0257-8972(02)00575-3[Crossref]
  • [33] R. Oriňáková, M. Kupková, E. Dudrová, M. Kabátová and M. Šupicová: “The role of coating in the cellular material preparation“, Chem. Pap., Vol. 58(4), (2004), pp. 236–241.
  • [34] M. Šupicová, R. Oriňáková, M. Kupková and M. Kabátová: “Electrolytical modification of Fe hollow spheres by Cu, Ni and Ni-Cu binary coatings“, Surf. Coat. Technol., Vol. 195(2–3), (2005), pp. 130–137. http://dx.doi.org/10.1016/j.surfcoat.2004.07.073[Crossref]
  • [35] R. Rozik, R. Oriňáková, K. Markušová and L. Trnková: “The study of Ni-Cu alloy deposition on iron powder particles in a fluidized bed from sulphate bath“, J. Solid St. Electrochem., Vol. 10(7), (2006), pp. 423–429. http://dx.doi.org/10.1007/s10008-005-0680-8[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11532-006-0047-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.