Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 12 | 2 | 74-103

Article title

Badania kliniczno-molekularne w oponiakach

Content

Title variants

EN
Clinical and molecular studies in meningiomas

Languages of publication

PL

Abstracts

PL
Cel: Celem pracy była ocena częstości występowania delecji na chromosomach 1., 9., 10., 14., 18. i 22. w 75 łagodnych i 15 atypowych oponiakach oraz skorelowania ich z niektórymi danymi klinicznymi. Materiał i metoda: Sparowane próbki prawidłowego, pochodzącego z leukocytów krwi obwodowej DNA oraz DNA oponiaka zostały zbadane pod kątem utraty heterozygotyczności (LOH) za pomocą 24 markerów mikrosatelitarnych i techniki reakcji łańcuchowej polimerazy (PCR). Materiał pochodził od chorych operowanych. Wyniki: Analiza statystyczna wykazała, że delecje na chromosomach 14. i 18. były w istotny sposób związane ze stopniem WHO oponiaków (odpowiednio p=0,048 i p=0,03). Co więcej, LOH na chromosomie 14. był istotnie statystycznie związany z rozmiarem oponiaka (p=0,048), jako że ryzyko wzrostu nowotworu o średnicy powyżej 4 cm było 6-krotnie większe niż ryzyko rozwoju mniejszego guza. Najczęściej występującą nieprawidłowością genetyczną w oponiakach jest LOH na chromosomie 22., co zostało potwierdzone w przedstawionym materiale, w którym zmianę tę zaobserwowano w 66% przypadków. Występował silny związek pomiędzy zmianami na chromosomie 22. a podtypem histologicznym nowotworu. Utrata heterozygotyczności na chromosomie 22. była częstsza w oponiakach włóknistych niż w meningotelialnych (p=0,001). Ponadto obserwowano związek pomiędzy obecnością LOH na 22. chromosomie a umiejscowieniem oponiaka: częstość LOH w guzach podstawy czaszki była znacząco mniejsza w porównaniu z oponiakami przystrzałkowymi (p=0,0004). Wnioski: Powyższe wyniki wskazują, że utrata heterozygotyczności na chromosomach 9., 10., 14., 18. i 22. może mieć związek z patogenezą i progresją oponiaka.
EN
Aim: The aim of our study was to evaluate the frequency of deletions on chromosomes 1, 9, 10, 14, 18 and 22 in 75 benign and 15 atypical meningiomas and correlate them with clinical findings. Methods: Paired normal and tumour DNA samples obtained from the patients operated on, were analyzed for loss of heterozygosity (LOH), using 24 microsatellite markers and PCR techniques. Results: Statistical analysis showed that deletions on chromosomes 14 and 18 were significantly associated with WHO grade of the meningiomas (p=0.048 and p=0.03, respectively). In addition, LOH on chromosome 14 was significantly associated with tumour size (p=0.048), as the risk of developing a tumour larger than 4 cm in diameter was 6-times greater than the risk of developing tumour with diameter below 4 cm. The most frequent genetic abnormality inmeningiomas is 22 LOH, which was confirmed in the present study in which high frequency of such abnormality was observed (66%). There was a clear associations between chromosome 22 status and histological subtype. LOH on chromosome 22 was more frequent in fibrous meningiomas than in the meningothelial variant (p=0.001). Besides that, there was a relationship between 22 LOH status and tumour location: the frequency of LOH in skull base meningiomas was significantly lower compared to parasagittal meningiomas (p=0.0004). Conclusions: These results indicated that allelic loss on chromosomes 9, 10, 14, 18 and 22 may be associated with meningioma pathogenesis and progression.

Discipline

Year

Volume

12

Issue

2

Pages

74-103

Physical description

Contributors

  • Klinika Neurochirurgii i Onkologii Centralnego Układu Nerwowego Uniwersytetu Medycznego w Łodzi.

References

  • 1. Riemenschneider M.J., Perry A., Reifenberger G.: Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006; 5: 1045-1054.
  • 2. Rohringer M., Sutherland G.R., Louw D.F., Sima A.A.: Incidence and clinicopathological features of meningioma. J. Neurosurg. 1989; 71: 665-672.
  • 3. Yee G., Rycroft R., Phillips C. i wsp.: 2009-2010 CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in Eighteen States in 2002-2006. Central Brain Tumor Registry of the United States, Hinsdale, IL, 2009.
  • 4. Jääskeläinen J., Haltia M., Laasonen E. i wsp.: The growth rate of intracranial meningiomas and its relation to histology. An analysis of 43 patients. Surg. Neurol. 1985; 24: 165-172.
  • 5. Marosi C., Hassler M., Roessler K. i wsp.: Meningioma. Crit. Rev. Oncol. Hematol. 2008; 67: 153-171.
  • 6. Cushing H., Eisenhardt I.: Meningiomas. Their Classification, Regional Behavior, Life History and Surgical End Results. Charles C. Thomas, Springfield 1938.
  • 7. Rachlin J.R., Rosenblum M.I.: Etiology and biology of meningiomas. W: Al-Mefty O. (red.): Meningiomas. Raven Press, New York 1991.
  • 8. Simon M., Boström J.P., Hartmann C.: Molecular genetics of meningiomas: from basic research to potential clinical applications. Neurosurgery 2007; 60: 787-798.
  • 9. Jaskólski D.J., Papierz W., Rieske P. i wsp.: Nowotwory ośrodkowego układu nerwowego w świetle klasyfikacji WHO 2000 (część druga). Aktualn. Neurol. 2002; 4: 287-336.
  • 10. Zawirski M., Tybor K. (red.): Oponiaki – patologia, diagnostyka i leczenie chirurgiczne. Annales Academiae Medicae Lodziensis, Łódź 2001; 42 (2).
  • 11. Jaskólski D.J., Papierz W., Biernat W., Liberski P.P.: Nowotwory ośrodkowego układu nerwowego. W: Kozubski W., Liberski P.P. (red.): Choroby układu nerwowego. PZWL, Warszawa 2004.
  • 12. Jaskólski D.J.: Ogólne objawy kliniczne w nowotworach ośrodkowego układu nerwowego. W: Liberski P.P., Kozubski W., Biernat W., Kordek R. (red.): Neuroonkologia kliniczna. Czelej, Lublin 2011.
  • 13. Saleman M.: Malignant meningiomas. W: Al-Mefty O. (red.): Meningiomas. Raven Press, New York 1991.
  • 14. Thomas H.G., Dolman C.I., Berry K.: Malignant meningioma: clinical and pathological features. J. Neurosurg. 1981; 55: 929-934.
  • 15. Niiro M., Yatsushiro K., Nakamura K. i wsp.: Natural history of elderly patients with asymptomatic meningiomas. J. Neurol. Neurosurg. Psychiatry 2000; 68: 25-28.
  • 16. Bricolo A.P., Turazzi S., Talacchi A., Cristofori L.: Microsurgical removal of petroclival meningiomas: a report of 33 patients. Neurosurgery 1992; 31: 813-828.
  • 17. Murtagh R., Linden C.: Neuroimaging of intracranial meningiomas. Neurosurg. Clin. N. Am. 1994; 5: 217-233.
  • 18. Simpson D.: The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry 1957; 20: 22-39.
  • 19. Jääskeläinen J.: Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg. Neurol. 1986; 26: 461-469.
  • 20. Barbaro N.M., Gutin P.H., Wilson C.B. i wsp.: Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery 1987; 20: 525-528.
  • 21. Taylor B.W. Jr, Marcus R.B. Jr, Friedman W.A. i wsp.: The meningioma controversy: postoperative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 1988; 15: 299-304.
  • 22. Goldsmith B.J., Wara W.M., Wilson C.B., Larson D.A.: Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J. Neurosurg. 1994; 80: 195-201.
  • 23. Kondziolka D., Lunsford L.D., Coffey R.J., Flickinger J.C.: Stereotactic radiosurgery of meningiomas. J. Neurosurg. 1991; 74: 552-559.
  • 24. Duma C.M., Lunsford L.D., Kondziolka D. i wsp.: Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 1993; 32: 699-704; discussion 704-705.
  • 25. Gutin P.H., Leibel S.A., Hosobuchi Y. i wsp.: Brachytherapy of recurrent tumors of the skull base and spine with iodine-125 sources. Neurosurgery 1987; 20: 938-945.
  • 26. Annegers J.F., Laws E.R. Jr, Kurland L.T. i wsp.: Head trauma and subsequent brain tumors. Neurosurgery 1979; 4: 203-206.
  • 27. Longstreth W.T. Jr, Phillips L.E., Drangsholt M. i wsp.: Dental X-rays and the risk of intracranial meningioma: a population- based case-control study. Cancer 2004; 100: 1026-1034.
  • 28. Ron E., Modan B., Boice J.D. i wsp.: Tumors of the brain and nervous system after radiotherapy in childhood. N. Engl. J. Med. 1988; 319: 1033-1039.
  • 29. Lamszus K.: Meningioma pathology, genetics, and biology. J. Neuropathol. Exp. Neurol. 2004; 63: 275-286.
  • 30. Sanson M., Cornu P.: Biology of meningiomas. Acta Neurochir. (Wien) 2000; 142: 493-505.
  • 31. Jhawar B.S., Fuchs C.S., Colditz G.A., Stampfer M.J.: Sex steroid hormone exposures and risk for meningioma. J. Neurosurg. 2003; 99: 848-853.
  • 32. Wen P.Y., Quant E., Drappatz J. i wsp.: Medical therapies for meningiomas. J. Neurooncol. 2010; 99: 365-378.
  • 33. Black P.M.: Hormones, radiosurgery and virtual reality: new aspects of meningioma management. Can. J. Neurol. Sci. 1997; 24: 302-306.
  • 34. Hsu D.W., Efird J.T., Hedley-Whyte E.T.: Progesterone and estrogen receptors in meningiomas: prognostic considerations. J. Neurosurg. 1997; 86: 113-120.
  • 35. Konstantinidou A.E., Korkolopoulou P., Mahera H. i wsp.: Hormone receptors in non-malignant meningiomas correlate with apoptosis, cell proliferation and recurrence-free survival. Histopathology 2003; 43: 280-290.
  • 36. Perry A., Cai D.X., Scheithauer B.W. i wsp.: Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J. Neuropathol. Exp. Neurol. 2000; 59: 872-879.
  • 37. Perry A., Gutmann D.H., Reifenberger G.: Molecular pathogenesis of meningiomas. J. Neurooncol. 2004; 70: 183-202.
  • 38. Verhagen A., Go K.G., Visser G.M. i wsp.: The presence of progesterone receptors in arachnoid granulations and in the lining of arachnoid cysts: its relevance to expression of progesterone receptors in meningiomas. Br. J. Neurosurg. 1995, 9: 47-50.
  • 39. Goodwin J.W., Crowley J., Eyre H.J. i wsp.: A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J. Neurooncol. 1993; 15: 75-77.
  • 40. Gabos S., Berkel J.: Meta-analysis of progestin and estrogen receptors in human meningiomas. Neuroepidemiology 1992; 11: 255-260.
  • 41. Knudson A.G. Jr: Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 1971; 68: 820-823.
  • 42. Ferner R.E.: Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol. 2007; 6: 340-351.
  • 43. Seizinger B.R., Rouleau G., Lane A.H. i wsp.: DNA linkage analysis in Von Recklinghausen neurofibromatosis. J. Med. Genet. 1987; 24: 529-530.
  • 44. De Vitis L.R., Tedde A., Vitelli F. i wsp.: Screening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum. Genet. 1996; 97: 632-637.
  • 45. De Vitis L.R., Tedde A., Vitelli F. i wsp.: Analysis of the neurofibromatosis type 2 gene in different human tumors of neuroectodermal origin. Hum. Genet. 1996; 97: 638-641.
  • 46. Messerini L., Vitelli F., De Vitis L.R. i wsp.: Microsatellite instability in sporadic mucinous colorectal carcinomas: relationship to clinico-pathological variables. J. Pathol. 1997; 182: 380-384.
  • 47. Liu Y., Pang J.C., Dong S. i wsp.: Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum. Pathol. 2005; 36: 416-425.
  • 48. Evans J.J., Jeun S.S., Lee J.H. i wsp.: Molecular alterations in the neurofibromatosis type 2 gene and its protein rarely occurring in meningothelial meningiomas. J. Neurosurg. 2001; 94: 111-117.
  • 49. Ragel B.T., Jensen R.L.: Aberrant signaling pathways in meningiomas. J. Neurooncol. 2010; 99: 315-324.
  • 50. Kros J., de Greve K., van Tilborg A. i wsp.: NF2 status of meningiomas is associated with tumour localization and histology. J. Pathol. 2001; 194: 367-372.
  • 51. Lallemand D., Curto M., Saotome I. i wsp.: NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev. 2003; 17: 1090-1100.
  • 52. Shaw R.J., Paez J.G., Curto M. i wsp.: The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 2001; 1: 63-72.
  • 53. McClatchey A.I., Saotome I., Mercer K. i wsp.: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev. 1998; 12: 1121-1133.
  • 54. Gutmann D.H., Hirbe A.C., Haipek C.A.: Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Hum. Mol. Genet. 2001; 10: 1519-1529.
  • 55. Gutmann D.H., Sherman L., Seftor L. i wsp.: Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesion and spreading. Hum. Mol. Genet. 1999; 8: 267-275.
  • 56. Ikeda K., Saeki Y., Gonzalez-Agosti C. i wsp.: Inhibition of NF2-negative and NF2-positive primary human meningioma cell proliferation by overexpression of merlin due to vectormediated gene transfer. J. Neurosurg. 1999; 91: 85-92.
  • 57. Morrison H., Sherman L.S., Legg J. i wsp.: The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 2001; 15: 968-980.
  • 58. Sherman L., Xu H.M., Geist R.T. i wsp.: Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 1997; 15: 2505-2509.
  • 59. James M.F., Manchanda N., Gonzalez-Agosti C. i wsp.: The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem. J. 2001; 356: 377-386.
  • 60. Jannatipour M., Dion P., Khan S. i wsp.: Schwannomin isoform- 1 interacts with syntenin via PDZ domains. J. Biol. Chem. 2001; 276: 33093-33100.
  • 61. Scoles D.R., Huynh D.P., Morcos P.A. i wsp.: Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nat. Genet. 1998; 18: 354-359.
  • 62. Xu H.M., Gutmann D.H.: Merlin differentially associates with the microtubule and actin cytoskeleton. J. Neurosci. Res. 1998; 51: 403-415.
  • 63. Guertin D.A., Sabatini D.M.: Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9-22.
  • 64. James M.F., Han S., Polizzano C. i wsp.: NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol. Cell. Biol. 2009; 29: 4250-4261.
  • 65. Xiao G.H., Gallagher R., Shetler J. i wsp.: The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol. Cell. Biol. 2005; 25: 2384-2394.
  • 66. Gerber M.A., Bahr S.M., Gutmann D.H.: Protein 4.1B/differentially expressed in adenocarcinoma of the lung-1 functions as a growth suppressor in meningioma cells by activating Rac1-dependent c-Jun-NH2-kinase signaling. Cancer Res. 2006; 66: 5295-5303.
  • 67. Gutmann D.H., Donahoe J., Perry A. i wsp.: Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum. Mol. Genet. 2000; 9: 1495-1500.
  • 68. Nunes F., Shen Y., Niida Y. i wsp.: Inactivation patterns of NF2 and DAL-1/4.1B (EPB41L3) in sporadic meningioma. Cancer Genet. Cytogenet. 2005; 162: 135-139.
  • 69. Martinez-Glez V., Bello M.J., Franco-Hernandez C. i wsp.: Mutational analysis of the DAL-1/4.1B tumour-suppressor gene locus in meningiomas. Int. J. Mol. Med. 2005; 16: 771-774.
  • 70. Huang S., Lichtenauer U.D., Pack S. i wsp.: Reassignment of the EPB4.1 gene to 1p36 and assessment of its involvement in neuroblastomas. Eur. J. Clin. Invest. 2001; 31: 907-914.
  • 71. Kino T., Takeshima H., Nakao M. i wsp.: Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cells 2001; 6: 441-454.
  • 72. Yu T., Robb V.A., Singh V. i wsp.: The 4.1/ezrin/radixin/moesin domain of the DAL-1/Protein 4.1B tumour suppressor interacts with 14-3-3 proteins. Biochem. J. 2002; 365: 783-789.
  • 73. Mawrin C., Perry A.: Pathological classification and molecular genetics of meningiomas. J. Neurooncol. 2010; 99: 379-391.
  • 74. Fernandez H.A., Kallenbach K., Seghezzi G. i wsp.: Inhibition of endothelial cell migration by gene transfer of tissue inhibitor of metalloproteinases-1. J. Surg. Res. 1999; 82: 156-162.
  • 75. Halaka A.N., Bunning R.A., Bird C.C. i wsp.: Production of collagenase and inhibitor (TIMP) by intracranial tumors and dura in vitro. J. Neurosurg. 1983; 59: 461-466.
  • 76. Mizoue T., Kawamoto H., Arita K. i wsp.: Secretion of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase- 1 by meningiomas detected by cell immunoblot analysis. Acta Neurochir. (Wien) 1999; 141: 481-486.
  • 77. Paek S.H., Kim D.G., Park C.K. i wsp.: The role of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in microcystic meningiomas. Oncol. Rep. 2006; 16: 49-56.
  • 78. Barski D., Wolter M., Reifenberger G., Riemenschneider M.J.: Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas. Brain Pathol. 2010; 20: 623-631.
  • 79. Boström J., Meyer-Puttlitz B., Wolter M. i wsp.: Alterations of the tumor suppressor genes CDKN2A (p16INK4a), p14ARF, CDKN2B (p15INK4b), and CDKN2C (p18INK4c) in atypical and anaplastic meningiomas. Am. J. Pathol. 2001; 159: 661-669.
  • 80. Goutagny S., Yang H.W., Zucman-Rossi J. i wsp.: Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin. Cancer Res. 2010; 16: 4155-4164.
  • 81. Jagannathan J., Oskouian R.J., Yeoh H.K. i wsp.: Molecular biology of unreresectable meningiomas: implications for new treatments and review of the literature. Skull Base 2008; 18: 173-187.
  • 82. Lusis E.A., Watson M.A., Chicoine M.R. i wsp.: Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma. Cancer Res. 2005; 65: 7121-7126.
  • 83. Skiriute D., Tamasauskas S., Asmoniene V. i wsp: Tumor grade-related NDRG2 gene expression in primary and recurrent intracranial meningiomas. J. Neurooncol. 2010; 102: 89-94.
  • 84. Chamberlain M.C., Tsao-Wei D.D., Groshen S.: Temozolomide for treatment-resistant recurrent meningioma. Neurology 2004; 62: 1210-1212.
  • 85. Lopez-Gines C., Cerda-Nicolas M., Gil-Benso R. i wsp.: Association of loss of 1p and alterations of chromosome 14 in meningioma progression. Cancer Genet. Cytogenet. 2004; 148: 123-128.
  • 86. Lusis E., Gutmann D.H.: Meningioma: an update. Curr. Opin. Neurol. 2004; 17: 687-692.
  • 87. Mathiesen T., Kihlström L., Karlsson B., Lindquist C.: Potential complications following radiotherapy for meningiomas. Surg. Neurol. 2003; 60: 193-200.
  • 88. Sulman E.P., White P.S., Brodeur G.M.: Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34. Oncogene 2004; 23: 1014-1020.
  • 89. Cai D.X., Banerjee R., Scheithauer B.W. i wsp.: Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J. Neuropathol. Exp. Neurol. 2001; 60: 628-636.
  • 90. Lewis T.S., Shapiro P.S., Ahn N.G.: Signal transduction through MAP kinase cascades. Adv. Cancer Res. 1998; 74: 49-139.
  • 91. Menon A.G., Rutter J.L., von Sattel J.P. i wsp.: Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 1997; 14: 611-616.
  • 92. Simon M., von Deimling A., Larson J.J. i wsp.: Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res. 1995; 55: 4696-4701.
  • 93. Tse J.Y., Ng H.K., Lau K.M. i wsp.: Loss of heterozygosity of chromosome 14q in low- and highgrade meningiomas. Hum. Pathol. 1997; 28: 779-785.
  • 94. Weber R.G., Boström J., Wolter M. i wsp.: Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc. Natl Acad. Sci. USA 1997; 94: 14719-14724.
  • 95. Maillo A., Orfao A., Sayagues J.M. i wsp.: New classification scheme for the prognostic stratification of meningioma on the basis of chromosome 14 abnormalities, patient age, and tumor histopathology. J. Clin. Oncol. 2003; 21: 3285-3295.
  • 96. Peyrard M., Fransson I., Xie Y.G. i wsp.: Characterization of a new member of the human betaadaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum Mol. Genet. 1994; 3: 1393-1399.
  • 97. Hankins G.R., Sasaki T., Lieu A.S. i wsp.: Identification of the deleted in liver cancer 1 gene, DLC1, as a candidate meningioma tumor suppressor. Neurosurgery 2008; 63: 771-781.
  • 98. Ragel B.T., Jensen R.L.: Molecular genetics of meningiomas. Neurosurg. Focus 2005; 19: E9.
  • 99. Maxwell M., Galanopoulos T., Hedley-Whyte E.T. i wsp.: Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int. J. Cancer 1990; 46: 16-21.
  • 100. Kazumoto K., Tamura M., Hoshino H., Yuasa Y.: Enhanced expression of the sis and c-myc oncogenes in human meningiomas. J. Neurosurg. 1990; 72: 786-791.
  • 101. Tanaka K., Sato C., Maeda Y. i wsp.: Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer 1989; 64: 2243-2249.
  • 102. Detta A., Kenny B.G., Smith C. i wsp.: Correlation of protooncogene expression and proliferation and meningiomas. Neurosurgery 1993; 33: 1065-1074.
  • 103. Carstens C., Messe E., Zang K.D., Blin N.: Human KRAS oncogene expression in meningioma. Cancer Lett. 1988; 43: 37-41.
  • 104. Diedrich U., Eckermann O., Schmidtke J.: Rare Ha-ras and cmos alleles in patients with intracranial tumors. Neurology 1988; 38: 587-589.
  • 105. Abramovich C.M., Prayson R.A.: Apoptotic activity and bcl-2 immunoreactivity in meningiomas. Association with grade and outcome. Am. J. Clin. Pathol. 2000; 114: 84-92.
  • 106. Nozaki M., Tada M., Kashiwazaki H. i wsp.: p73 is not mutated in meningiomas as determined with a functional yeast assay but p73 expression increases with tumor grade. Brain Pathol. 2001; 11: 296-305.
  • 107. Zhang M.X., Zhao X., Wang Z.G. i wsp.: Constitutive activation of signal transducer and activator of transcription 3 regulates expression of vascular endothelial growth factor in human meningioma differentiation. J. Cancer Res. Clin. Oncol. 2010; 136: 981-988.
  • 108. Ferrara N., Gerber H.P., LeCouter J.: The biology of VEGF and its receptors. Nat. Med. 2003; 9: 669-676.
  • 109. Willert K., Brown J.D., Danenberg E. i wsp.: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448-452.
  • 110. Laurendeau I., Ferrer M., Garrido D. i wsp.: Gene expression profiling of the hedgehog signaling pathway in human meningiomas. Mol. Med. 2010; 16: 262-270.
  • 111. Varjosalo M., Taipale J.: Hedgehog: functions and mechanisms. Genes Dev. 2008; 22: 2454-2472.
  • 112. Xie J., Johnson R.L., Zhang X. i wsp.: Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res. 1997; 57: 2369-2372.
  • 113. Trofatter J.A., MacCollin M.M., Rutter J.L. i wsp.: A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72: 791-800.
  • 114. Pećina-Slaus N., Nikuseva Martić T., Deak A.J. i wsp.: Genetic and protein changes of E-cadherin in meningiomas. J. Cancer Res. Clin. Oncol. 2010; 136: 695-702.
  • 115. Schwechheimer K., Zhou L., Birchmeier W.: E-Cadherin in human brain tumours: loss of immunoreactivity in malignant meningiomas. Virchows Arch. 1998; 432: 163-167.
  • 116. Zhou K., Wang G., Wang Y. i wsp.: The potential involvement of E-cadherin and beta-catenins in meningioma. PloS One 2010; 5: e11231.
  • 117. Harada T., Irving R.M., Xuereb J.H. i wsp.: Molecular genetic investigation of the neurofibromatosis type 2 tumor suppressor gene in sporadic meningioma. J. Neurosurg. 1996; 84: 847-851.
  • 118. Kaartinen V., Gonzalez-Gomez I., Voncken J.W. i wsp.: Abnormal function of astroglia lacking Abr and Bcr RacGAPs. Development 2001; 128: 4217-4227.
  • 119. Ress A., Moelling K.: Bcr is a negative regulator of the Wnt signalling pathway. EMBO Rep. 2005; 6: 1095-1100.
  • 120. Wozniak K., Piaskowski S., Gresner S.M. i wsp.: BCR expression is decreased in meningiomas showing loss of heterozygosity of 22q within a new minimal deletion region. Cancer Genet. Cytogenet. 2008; 183: 14-20.
  • 121. Pérez-Magán E., Rodríguez de Lope A., Ribalta T. i wsp.: Differential expression profiling analyses identifies downregulation of 1p, 6q, and 14q genes and overexpression of 6p histone cluster 1 genes as markers of recurrence in meningiomas. Neuro. Oncol. 2010; 12: 1278-1290.
  • 122. Baia G.S., Stifani S., Kimura E.T. i wsp.: Notch activation is associated with tetraploidy and enhanced chromosomal instability in meningiomas. Neoplasia 2008; 10: 604-612.
  • 123. Kopan R.: Notch: a membrane-bound transcription factor. J. Cell Sci. 2002; 115: 1095-1097.
  • 124. Iso T., Kedes L., Hamamori Y.: HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell Physiol. 2003; 194: 237-255.
  • 125. Mawrin C., Sasse T., Kirches E. i wsp.: Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas. Clin. Cancer Res. 2005; 11: 4074-4082.
  • 126. Johnson M.D., Woodard A., Kim P., Frexes-Steed M.: Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J. Neurosurg. 2001; 94: 293-300.
  • 127. Johnson M.D., Woodard A., Okediji E.J. i wsp.: Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J. Neurooncol. 2002; 56: 133-142.
  • 128. Seger R., Krebs E.G.: The MAPK signaling cascade. FASEB J. 1995; 9: 726-735.
  • 129. Johnson M.D., Okediji E., Woodard A.: Transforming growth factor-beta effects on meningioma cell proliferation and signal transduction pathways. J. Neurooncol. 2004; 66: 9-16.
  • 130. Wrobel G., Roerig P., Kokocinski F. i wsp.: Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int. J. Cancer 2005; 114: 249-256.
  • 131. Yang S.Y., Xu G.M.: Expression of PDGF and its receptor as well as their relationship to proliferating activity and apoptosis of meningiomas in human meningiomas. J. Clin. Neurosci. 2001; 8 (supl. 1): 49-53.
  • 132. Torp S.H., Helseth E., Dalen A., Unsgaard G.: Expression of epidermal growth factor receptor in human meningiomas and meningeal tissue. APMIS 1992; 100: 797-802.
  • 133. Carroll R.S., Black P.M., Zhang J. i wsp.: Expression and activation of epidermal growth factor receptors in meningiomas. J. Neurosurg. 1997; 87: 315-323.
  • 134. Halper J., Jung C., Perry A. i wsp.: Expression of TGFalpha in meningiomas. J. Neurooncol. 1999; 45: 127-134.
  • 135. Loussouarn D., Brunon J., Avet-Loiseau H. i wsp.: Prognostic value of HER2 expression in meningiomas: an immunohistochemical and fluorescence in situ hybridization study. Hum. Pathol. 2006; 37: 415-421.
  • 136. Bitzer M., Wöckel L., Luft A.R. i wsp: The importance of pial blood supply to the development of peritumoral brain edema in meningiomas. J. Neurosurg. 1997; 87: 368-373.
  • 137. Samoto K., Ikezaki K., Ono M. i wsp.: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 1995; 55: 1189-1193.
  • 138. Lamszus K., Lengler U., Schmidt N.O. i wsp.: Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy. Neurosurgery 2000; 46: 938-948.
  • 139. Yamasaki F., Yoshioka H., Hama S. i wsp.: Recurrence of meningiomas. Cancer 2000; 89: 1102-1110.
  • 140. Choy W., Kim W., Nagasawa D. i wsp.: The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg. Focus 2011; 30: E6.
  • 141. Nathoo N., Barnett G.H., Golubic M.: The eicosanoid cascade: possible role in gliomas and meningiomas. J. Clin. Pathol. 2004; 57: 6-13.
  • 142. Ragel B.T., Jensen R.L., Couldwell W.T.: Inflammatory response and meningioma tumorigenesis and the effect of cyclooxygenase-2 inhibitors. Neurosurg. Focus 2007; 23: E7.
  • 143. Simon M., Park T.W., Leuenroth S. i wsp.: Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J. Neurosurg. 2000; 92: 832-840.
  • 144. Langford L.A., Piatyszek M.A., Xu R. i wsp.: Telomerase activity in ordinary meningiomas predicts poor outcome. Hum. Pathol. 1997; 28: 416-420.
  • 145. López-Ginés C., Gil-Benso R., Collado-Díaz M. i wsp.: Meningioma: a model of cytogenetic evolution in tumoral initiation and progression. Neurocirugia (Astur.) 2003; 14: 517-525.
  • 146. Zang K.D.: Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet. Cell Genet. 2001; 93: 207-220.
  • 147. Büschges R., Ichimura K., Weber R.G. i wsp.: Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol. 2002; 12: 145-153.
  • 148. Al-Mefty O., Kadri P.A., Pravdenkova S. i wsp.: Malignant progression in meningioma: documentation of a series and analysis of cytogenetic findings. J. Neurosurg. 2004; 101: 210-218.
  • 149. McClatchey A.I., Giovannini M.: Membrane organization and tumorigenesis − the NF2 tumor suppressor, Merlin. Genes Dev. 2005; 19: 2265-2277.
  • 150. Lomas J., Bello M.J., Arjona D. i wsp.: Analysis of p73 gene in meningiomas with deletion at 1p. Cancer Genet. Cytogenet. 2001; 129: 88-91.
  • 151. Zhang X., Gejman R., Mahta A. i wsp.: Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010; 70: 2350-2358.
  • 152. Peters N., Wellenreuther R., Rollbrocker B. i wsp.: Analysis of the PTEN gene in human meningiomas. Neuropathol. Appl. Neurobiol. 1998; 24: 3-8.
  • 153. von Deimling A., Fimmers R., Schmidt M.C. i wsp.: Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J. Neuropathol. Exp. Neurol. 2000; 59: 544-558.
  • 154. Mihaila D., Gutiérrez J.A., Rosenblum M.L. i wsp.: Meningiomas: analysis of loss of heterozygosity on chromosome 10 in tumor progression and the delineation of four regions of chromosomal deletion in common with other cancers. Clin. Cancer Res. 2003; 9: 4435-4442.
  • 155. Mihaila D., Jankowski M., Gutiérrez J.A. i wsp.: Meningiomas: loss of heterozygosity on chromosome 10 and markerspecific correlations with grade, recurrence, and survival. Clin. Cancer Res. 2003; 9: 4443-4451.
  • 156. Büschges R., Boström J., Wolter M. i wsp.: Analysis of human meningiomas for aberrations of the MADH2, MADH4, APM-1 and DCC tumor suppressor genes on the long arm of chromosome 18. Int. J. Cancer 2001; 92: 551-554.
  • 157. Bauman G., Pahapill P., Macdonald D. i wsp.: Low grade glioma: a measuring radiographic response to radiotherapy. Can. J. Neurol. Sci. 1999; 26: 18-22.
  • 158. Louis D.N., Ohgaki H., Wiestler O.D. i wsp.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. (Berl.) 2007; 114: 97-109.
  • 159. James C.D., Carlbom E., Nordenskjold M. i wsp.: Mitotic recombination of chromosome 17 in astrocytomas. Proc. Natl Acad. Sci. USA 1989; 86: 2858-2862.
  • 160. Reifenberger G., Louis D.N.: Oligodendroglioma: toward molecular definitions in diagnostic neuro-oncology. J. Neuropathol. Exp. Neurol. 2003; 62: 111-126.
  • 161. Smith J.S., Alderete B., Minn Y. i wsp.: Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 1999; 18: 4144-4152.
  • 162. Nigro J.M., Takahashi M.A., Ginzinger D.G. i wsp.: Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am. J. Pathol. 2001; 158: 1253-1262.
  • 163. Alexiou G.A., Markoula S., Gogou P., Kyritsis A.P.: Genetic and molecular alterations in meningiomas. Clin. Neurol. Neurosurg. 2011; 113: 261-267.
  • 164. Korhonen K., Salminen T., Raitanen J. i wsp.: Female predominance in meningiomas can not be explained by differences in progesterone, estrogen, or androgen receptor expression. J. Neurooncol. 2006; 80: 1-7.
  • 165. Servo A., Porras M., Jääskeläinen J. i wsp.: Computed tomography and angiography do not reliably discriminate malignant meningiomas from benign ones. Neuroradiology 1990; 32: 94-97.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-f37dc2b7-9a81-4e93-b7d3-a2d3ffc35390
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.