Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 7 | 4 | 232-241

Article title

Zastosowanie komórek macierzystych w leczeniu pacjentów z chorobą Parkinsona

Authors

Content

Title variants

EN
Stem cells in Parkinson disease treatment

Languages of publication

EN PL

Abstracts

EN
This review shows current progress in stem cell therapy of Parkinson disease. Article depicts strategies of stem cell therapy, discusses results of trials performed to treat Parkinson disease, describes experience of author in preparing cells for patients with Parkinson disease, and presents potential danger of stem cell therapy. Several strategies of stem cell therapies are presented. Strategies are divided in to: physiological, physiologicallybiotechnological and biotechnological. Physiological strategy includes: use of neural stem cells, and Ratajczak concept. Plasticity (transdifferentiation), is considered as approach physiologically-biotechnological. Biotechnological strategy includes: cloning and reprogramming. Article shows opinions of authorities working on Parkinson disease stem cells therapy, briefly discusses trials of Hauser et al., Hegel et al., Brundin et al., Freed et al., and Olanow et al. Clues coming from these trials, for future use of stem cells derivatives, in the treatment of Parkinson disease are presented. Hints coming from works on Parkinson disease animals models, are also included. Moreover author presents his own experience in preparing cells potentially useful in Parkinson disease treatment, which is use of fibroblasts and neural stem cells. Finally possible dangerous consequences of stem cells therapy, such as risk of cancers development, are shown. Stem cell therapy appears as progressing, but in author opinion there is no final conclusion to say if it will work very efficiently or not.
PL
W ostatnim czasie dokonał się istotny postęp w terapii komórkowej choroby Parkinsona. W niniejszym artykule przedstawiono strategie dotyczące terapii komórkowej, opisano wyniki prób klinicznych, przedstawiono także doświadczenia autora w przygotowaniu komórek dla osób z chorobą Parkinsona oraz uwypuklono niebezpieczeństwa, jakie mogą wynikać ze stosowania terapii komórkowej. Zaprezentowano takie strategie terapii komórkowej, jak: strategia fizjologiczna, strategia fizjologiczno-biotechnologiczna i strategia biotechnologiczna. W ramach strategii fizjologicznej ujęto zastosowanie neuralnych komórek macierzystych i koncepcję Ratajczaka. Plastyczność (transróżnicowanie) jest rozpatrywana jako podstawa strategii fizjologiczno-biotechnologicznej. Strategia biotechnologiczna to klonowanie i reprogramowanie. W artykule zaprezentowano także opinie autorytetów na temat skuteczności terapii komórkowej w leczeniu pacjentów z chorobą Parkinsona oraz krótko opisano próby kliniczne, którymi niezależnie od siebie kierowali: Hauser, Hegel, Brundin, Freed i Olanow. Przedstawiono również implikacje ich dokonań badawczych dla przyszłych prób wykorzystania komórek macierzystych w terapii osób z chorobą Parkinsona, jak również wyniki badań nad zwierzętami z eksperymentalnie wywołanym parkinsonizmem. Autor prezentuje ponadto wyniki własnych doświadczeń w przygotowywaniu komórek potencjalnie użytecznych w leczeniu pacjentów z chorobą Parkinsona oraz omawia istotne zagrożenia związane ze stosowaniem terapii komórkowej (takie jak choroba nowotworowa). Terapia komórkowa rozwija się, jednak w odczuciu autora niniejszego artykułu nie ma pewności, czy będzie ona naprawdę skuteczną.

Discipline

Year

Volume

7

Issue

4

Pages

232-241

Physical description

Contributors

author
  • Zakład Patologii Molekularnej i Neuropatologii, Uniwersytet Medyczny w Łodzi, tel.: 042 675 76 11

References

  • 1. Taupin P., Gage F.H.: Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res. 2002; 69: 745-749.
  • 2. Uchida N., Buck D.W., He D. i wsp.: Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA 2000; 97: 14720-14725.
  • 3. Ohyama K., Ellis P., Kimura S., Placzek M.: Directed differentiation of neural cells to hypothalamic dopaminergic neurons. Development 2005; 132: 5185-5197.
  • 4. Kucia M., Ratajczak J., Ratajczak M.Z.: Are bone marrow stem cells plastic or heterogenous - that is the question. Exp. Hematol. 2005; 33: 613-623.
  • 5. Kucia M., Reca R., Jala VR. i wsp.: Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19: 1118-1127.
  • 6. Shih C.C., DiGiusto D., Mamelak A. i wsp.: Hematopoietic potential of neural stem cells: plasticity versus heterogeneity. Leuk. Lymphoma 2002; 43: 2263-2268.
  • 7. Li W.C., Yu W.Y., Quinlan J.M. i wsp.: The molecular basis of transdifferentiation. J Cell. Mol. Med. 2005; 9: 569-582.
  • 8. Theise N.D., Krause D.S.: Toward a new paradigm of cell plasticity. Leukemia 2002; 16: 542-548.
  • 9. Verfaillie C.: Stem cell plasticity. Hematology 2005; 10 supl. 1: 293-296.
  • 10. Rutenberg M.S., Hamazaki T., Singh A.M., Terada N.: Stem cell plasticity, beyond alchemy. Int. J. Hematol. 2004: 79: 15-21.
  • 11. Koshizuka S., Okada S., Okawa A. i wsp.: Transplanted hematopoietic stem cells from bone marrow differentiate into neural lineage cells and promote functional recovery after spinal cord injury in mice. J. Neuropathol. Exp. Neurol. 2004; 63: 64-72.
  • 12. Liu M., Han Z.C.: Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J. Cell. Mol. Med. 2008 [Epub. ahead of print].
  • 13. Takahashi K., Yamanaka S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676.
  • 14. Gan Q., Yoshida T, McDonald O.G., Owens G.K.: Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 2007; 25: 2-9.
  • 15. Sridharan R., Plath K.: Illuminating the black box of reprogramming. Cell Stem Cell 2008; 2: 295-297.
  • 16. Takahashi K., Tanabe K., Ohnuki M. i wsp.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-872.
  • 17. Rieske P., Krynska B., Azizi S.A.: Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuroectodermal origin. Differentiation 2005; 73: 474-483.
  • 18. Freed C.R.: Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson’s disease? Proc. Natl Acad. Sci. USA 2002; 99: 1755-1757.
  • 19. Perl D.P., Olanow C.W., Calne D.: Alzheimer’s disease and Parkinson’s disease: distinct entities or extremes of a spectrum of neurodegeneration? Ann. Neurol. 1998; 44 (3 supl. 1): S19-S31.
  • 20. Przuntek H.: Non-dopaminergic therapy in Parkinson’s disease. J. Neurol. 2000; 247 supl. 2: II19-II24.
  • 21. Diamond S.G., Markham C.H., Rand R.W. i wsp.: Four-year follow-up of adrenal-to-brain transplants in Parkinson’s disease. Arch. Neurol. 1994; 51: 559-563.
  • 22. Langston J.W: The promise of stem cells in Parkinson disease. J. Clin. Invest. 2005; 115: 23-25.
  • 23. Hagell P, Schrag A., Piccini P. i wsp.: Sequential bilateral transplantation in Parkinson’s disease: effects of the second graft. Brain 1999; 122 (cz. 6): 1121-1132.
  • 24. Hauser R.A., Freeman T.B., Snow B.J. i wsp.: Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 1999; 56: 179-187.
  • 25. Brundin P, Pogarell O., Hagell P. i wsp.: Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 2000; 123 (cz. 7): 1380-1390.
  • 26. Freed C.R., Greene P.E., Breeze R.E. i wsp.: Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001; 344: 710-719.
  • 27. Hagell P., Brundin P.: Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J. Neuropathol. Exp. Neurol. 2001; 60: 741-752.
  • 28. Olanow C.W, Goetz C.G., Kordower J.H. i wsp.: Adouble-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 2003; 54:403-414.
  • 29. Kim J.H., Auerbach J.M., Rodriguez-Gómez J.A. i wsp.: Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002; 418: 50-56.
  • 30. Takagi Y., Takahashi J., Saiki H. i wsp.: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 2005; 115: 102-109.
  • 31. Yoo Y.M., Kim Y.J., Lee U. i wsp.: Neurotrophic factor in the treatment of Parkinson disease. Neurosurg. Focus 2003; 15: ECP1.
  • 32. MacLaren R.E., Pearson R.A., MacNeil A. i wsp.: Retinal repair by transplantation of photoreceptor precursors. Nature 2006; 444: 203-207.
  • 33. Rieske P., Azizi S.A., Augelli B. i wsp.: A population of human brain parenchymal cells express markers of glial, neuronal and early neural cells and differentiate into cells of neuronal and glial lineages. Eur. J. Neurosci. 2007; 25: 31-37.
  • 34. Kim B.J., Kim S.S., Kim Y.I. i wsp.: Forskolin promotes astroglial differentiation of human central neurocytoma cells. Exp. Mol. Med. 2004; 36: 52-56.
  • 35. Lu P, Blesch A., Tuszynski M.H.: Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J. Neurosci. Res. 2004; 77: 174-191.
  • 36. Guidance for industry: guidance for human somatic cell therapy and gene therapy. Rockville, MD: Food and Drug Administration, March 1998 [cytowany 28 września 2006 r.]. Adres: http://www.fda.gov/cber/gdlns/somgene.pdf
  • 37. Points to consider in the characterization of cell lines used to produce biologicals. Rockville, MD: Food and Drug Administration, July 12,1993 [cytowany 28 września 2006 r.]. Adres: http://www.fda.gov/cber/gdlns/ptccell.pdf
  • 38. Guidance for industry: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products (HCT/Ps). Rockville, MD: Food and Drug Administration, May 2004 [cytowany 28 września 2006 r.]. Adres: http://www.fda.gov/cber/gdlns/tissdonor.pdf
  • 39. Guidance for reviewers: instructions and template for chemistry, manufacturing, and control (CMC) reviewers of human somatic cell therapy investigational new drug applications (INDs). Rockville, MD: Food and Drug Administration, August 2003 [cytowany 28 września 2006 r.]. Adres: http://www.fda.gov/cber/gdlns/cmcsomcell.pdf
  • 40. Genbacev O., Krtolica A., Zdravkovic T. i wsp.: Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 2005; 83: 1517-1529.
  • 41. Kucia M., Ratajczak M.Z.: Stem cells as a two edged sword - from regeneration to tumor formation. J. Physiol. Pharmacol. 2006; 57 supl. 7: 5-16.
  • 42. Ratajczak M.Z.: Cancer stem cells - normal stem cells “Jedi” that went over to the “dark side”. Folia Histochem. Cytobiol. 2005; 43: 175-181.
  • 43. Wernig M., Zhao J.P., Pruszak J. i wsp.: Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc. Natl Acad. Sci. USA 2008; 105: 5856-5861.
  • 44. Hagell P., Piccini P., Bjorklund A. i wsp.: Dyskinesias following neural transplantation in Parkinson’s disease. Nat. Neurosci. 2002; 5: 627-628.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-4732ed9e-1b0d-4bed-99de-4426af58fac7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.