Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 7 | 4 | 223-231

Article title

Udział chemokin i ich receptorów w patogenezie stwardnienia rozsianego

Content

Title variants

EN
Chemokines and their receptors in pathogenesis of multiple sclerosis

Languages of publication

EN PL

Abstracts

EN
Chemokines are relatively recently characterized and growing fast family of low molecular weight cytokines, which stimulate migration of cells in vitro and in vivo. Together with adhesion molecules chemokines are involved in the complex process of migration of leukocytes outside of blood vessels. They also direct their migration within inflamed peripheral tissues. Chemokines are divided into four subfamilies. The main criterion of this division is the localization of pairs of cysteines in the NH2 region. The major chemokine subfamilies are CXC (α) and CC (β) chemokines. In CC subfamily the first cysteines are adjacent, in CXC group they are separated by a single aminoacid. The exemptions are Lymphotactins α and β which posses only one pair of cysteines (C or γ subfamily) and Fractalkine, in which the first cysteines are separated by three aminoacids (CX3C or δ subfamily). Functionally chemokines can be divided into proinflammatory and lymphoid. Chemokines influence their target cells through the specific seven transmembrane domain receptors. They are the important mediators of migration of inflammatory cells to the central nervous system (CNS) during different pathological processes that’s why they became the target of interest in the studies on multiple sclerosis (MS). Analysis of MS brains showed significantly increased expression of chemokines CCL4 and CCL5 at mRNA level. In the cerebrospinal fluid of MS patients during relapse increased level of chemokines CCL5, CXCL9 and CXCL10 was detected. Within chronic active demyelinating plaques in MS brains expression of CCR2, CCR3 and CCR5 was observed in macrophages and microglia.
PL
Chemokiny stanowią stosunkowo niedawno wyodrębnioną i szybko rozrastającą się rodzinę cytokin charakteryzujących się małym ciężarem cząsteczkowym oraz zdolnością stymulowania migracji komórek in vitro oraz in vivo. Chemokiny wspólnie z molekułami adhezyjnymi biorą udział w złożonym procesie przemieszczania się leukocytów poza łożysko naczyniowe. Ukierunkowują one również migrację leukocytów w obrębie tkanek obwodowych, gdzie rozwija się zapalenie. Chemokiny podzielono na cztery grupy. Decydującym kryterium podziału jest położenie względem siebie par cystein w okolicy końca NH2. Dwie największe grupy che-mokin to chemokiny CXC (α) i CC (β). W grupie CC dwie pierwsze następujące po sobie cysteiny pozostają nierozdzielone, podczas gdy w grupie CXC rozdziela je pojedynczy aminokwas. Wyjątkami są limfotaktyny α i β posiadające tylko jedną parę cystein (grupa chemokin C lub γ) oraz fraktalkina, u której dwie pary cystein oddzielają trzy inne aminokwasy (grupa CX3C lub δ). Ze względu na funkcję chemokiny można podzielić na prozapalne oraz limfoidalne. Chemokiny oddziałują na komórki docelowe za pośrednictwem swoistych receptorów charakteryzujących się obecnością siedmiu domen przezbłonowych. Będąc jednym z głównych czynników odpowiedzialnych za migrację komórek zapalnych do ośrodkowego układu nerwowego (OUN) w różnych procesach patologicznych, chemokiny stały się obiektem zainteresowania również w badaniach nad stwardnieniem rozsianym (SM). Analiza mózgów pacjentów z SM wykazała istotny wzrost ekspresji chemokin CCL4 i CCL5 na poziomie mRNA. W płynie mózgowo-rdzeniowym w okresie rzutu choroby stwierdzono podwyższony poziom chemokin CCL5, CXCL9 oraz CXCL10. U chorych z SM w obrębie przewlekłych aktywnych ognisk demielinizacyjnych stwierdzano komórki barwiące się w kierunku receptorów CCR2, CCR3 i CCR5, które odpowiadały morfologią makrofagom i mikroglejowi.

Discipline

Year

Volume

7

Issue

4

Pages

223-231

Physical description

Contributors

  • Klinika Neurologii i Epileptologii Uniwersytetu Medycznego w Łodzi, ul. Żeromskiego 113, 90-549 Łódź, tel.: 042 639 35 91
  • Klinika Neurologii i Epileptologii Uniwersytetu Medycznego w Łodzi, ul. Żeromskiego 113, 90-549 Łódź, tel.: 042 639 35 91

References

  • 1. Butcher E.C., Picker L.J.: Lymphocyte homing and homeostasis. Science 1996; 272: 60-66.
  • 2. Klein R.S., Williams K.C., Alvarez-Hernandez X. i wsp.: Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J. Immunol. 1999; 163: 1636-1646.
  • 3. Hwang J., Kim C.W., Son K.N. i wsp.: Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Lett. 2004; 570: 47-51.
  • 4. Hwang J., Son K.N., Kim C.W i wsp.: Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine 2005; 30: 254-263.
  • 5. Chitnis C.E., Chaudhuri A., Horuk R. i wsp.: The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 1996; 184: 1531-1536.
  • 6. Pogo A.O., Chaudhuri A.: The Duffy protein: a malarial and chemokine receptor. Semin. Hematol. 2000; 37: 122-129.
  • 7. Ma Q., Jones D., Borghesani P.R. i wsp.: Impaired B-lym-phopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA 1998; 95: 9448-9453.
  • 8. Nagasawa T: Role of chemokine SDF-1/PBSF and its receptor CXCR4 in blood vessel development. Ann. N.Y. Acad. Sci. 2001; 947: 112-115.
  • 9. Stumm R.K., Zhou C., Ara T. i wsp.: CXCR4 regulates interneuron migration in the developing neocortex. J. Neu-rosci. 2003; 23: 5123-5130.
  • 10. Zou Y.R., Kottmann A.H., KurodaM. i wsp.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595-599.
  • 11. Imai T., Hieshima K., Haskell C. i wsp.: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997; 91: 521-530.
  • 12. Matloubian M., David A., Engel S. i wsp.: A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat. Immunol. 2000; 1: 298-304.
  • 13. Amara A., Lorthioir O., Valenzuela A. i wsp.: Stromal cell-derived factor-1a associates with heparan sulfates through the first β-strand of the chemokine. J. Biol. Chem. 1999; 274: 23916-23925.
  • 14. Chakravarty L., Rogers L., Quach T. i wsp.: Lysine 58 and histidine 66 at the C-terminal α-helix of monocyte chemo-attractant protein-1 are essential for glycosaminoglycan binding. J. Biol. Chem. 1998; 273: 29641-29647.
  • 15. Baggiolini M.: Chemokines in pathology and medicine. J. Intern. Med. 2001; 250: 91-104.
  • 16. Bacon K., Baggiolini M., Broxmeyer H. i wsp.; IUIS/WHO Subcommittee on Chemokine Nomenclature: Chemokine/ chemokine receptor nomenclature. J. Interferon Cytokine Res. 2002; 22: 1067-1068.
  • 17. Murphy PM.: International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol. Rev. 2002; 54: 227-229.
  • 18. Murphy P.M., Baggiolini M., Charo I.F. i wsp.: International Union of Pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 2000; 52: 145-176.
  • 19. Ohl L., Bernhardt G., Pabst O., Forster R.: Chemokines as organizers of primary and secondary lymphoid organs. Semin. Immunol. 2003; 15: 249-255.
  • 20. Ohl L., Henning G., Krautwald S. i wsp.: Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 2003; 197: 1199-1204.
  • 21. Cupedo T, Lund F.E., Ngo VN. i wsp.: Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemo-kine ligand 13. J. Immunol. 2004; 173: 4889-4896.
  • 22. Cupedo T, Mebius R.E.: Role of chemokines in the development of secondary and tertiary lymphoid tissues. Semin. Immunol. 2003; 15: 243-248.
  • 23. Boulay F., Tardif M., Brouchon L., Vignais P.: The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry 1990; 29: 11123-11133.
  • 24. Murphy P.M., Tiffany H.L.: Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 1991; 253: 1280-1283.
  • 25. Holmes W.E., Lee J., Kuang WJ. i wsp.: Structure and functional expression of a human interleukin-8 receptor. Science 1991; 253: 1278-1280.
  • 26. Combadiere C., Ahuja S.K., Tiffany H.L., Murphy P.M.: Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1a, MIP-φ, and RANTES. J. Leukoc. Biol. 1996; 60: 147-152.
  • 27. Murphy PM.: The molecular biology of leukocyte chemo-attractant receptors. Annu. Rev. Immunol. 1994; 12: 593-633.
  • 28. Mellado M., Rodriguez-Frade J.M., Mańes S., Martinez-A C.: Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol. 2001; 19: 397-421.
  • 29. Rodriguez-Frade J.M., Vila-Coro A.J., de Ana A.M. i wsp.: The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA 1999: 96: 3628-3633.
  • 30. Vila-Coro A.J., Rodriguez-Frade J.M., Martin de Ana A. i wsp.: The chemokine SDF-1a triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999; 13: 1699-1710.
  • 31. Thelen M., Peveri P., Kernen P. i wsp.: Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J. 1988; 2: 2702-2706.
  • 32. Wu D., LaRosa G.J., Simon M.I.: G protein-coupled signal transduction pathways for interleukin-8. Science 1993; 261: 101-103.
  • 33. Arai H., Charo I.F.: Differential regulation of G-protein-mediated signaling by chemokine receptors. J. Biol. Chem. 1996; 271:21814-21819.
  • 34. Minamiguchi H., Kimura T, Urata Y. i wsp.: Simultaneous signalling through c-mpl, c-kit and CXCR4 enhances the proliferation and differentiation of human megakaryocyte progenitors: possible roles of the PI3-K, PKC and mApK pathways. Br. J. Haematol. 2001; 115: 175-185.
  • 35. Thelen M.: Dancing to the tune of chemokines. Nat. Immunol. 2001; 2: 129-134.
  • 36. Zhu Y., Yu T., Zhang X.C. i wsp.: Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat. Neurosci. 2002; 5: 719-720.
  • 37. Robinson S., Tani M., Strieter R.M. i wsp.: The chemokine growth-regulated oncogene-α promotes spinal cord oligodendrocyte precursor proliferation. J. Neurosci. 1998; 18: 10457-10463.
  • 38. Meucci O., Fatatis A., Simen A.A. i wsp.: Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl Acad. Sci. USA 1998; 95:14500-14505.
  • 39. Saruhan-Direskeneli G., Yentur S.P., Akman-Demir G. i wsp.: Cytokines and chemokines in neuro-Behęet’s disease compared to multiple sclerosis and other neurological diseases. J. Neuroimmunol. 2003; 145: 127-134.
  • 40. Lund B.T., Ashikian N., Ta H.Q. i wsp.: Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J. Neuroimmunol. 2004; 155: 161-171.
  • 41. Filipovic R., Jakovcevski I., Zecevic N.: GRO-α and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev. Neurosci. 2003; 25: 279-290.
  • 42. Miyagishi R., Kikuchi S., Fukazawa T., Tashiro K.: Macrophage inflammatory protein-^ in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J. Neurol. Sci. 1995; 129: 223-227.
  • 43. Boven L.A., Montagne L., Nottet H.S., De Groot C.J.: Macrophage inflammatory protein-to (ΜΣΡ-1α), MIP-1 β, and RAnTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 2000; 122: 257-263.
  • 44. Sorensen T.L., Tani M., Jensen J. i wsp.: Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 1999; 103: 807-815.
  • 45. Franciotta D., Martino G., Zardini E. i wsp.: Serum and CSF levels of MCP-1 and IP-10 in multiple sclerosis patients with acute and stable disease and undergoing immunomodulatory therapies. J. Neuroimmunol. 2001; 115: 192-198.
  • 46. Martinez-Caceres E.M., Espejo C., Brieva L. i wsp.: Expression of chemokine receptors in the different clinical forms of multiple sclerosis. Mult. Scler. 2002; 8: 390-395.
  • 47. Sindern E., Niederkinkhaus Y., Henschel M. i wsp.: Differential release of β-chemokines in serum and CSF of patients with relapsing-remitting multiple sclerosis. Acta Neurol. Scand. 2001; 104: 88-91.
  • 48. Mahad D.J., Howell S.J., Woodroofe M.N.: Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2002; 72: 498-502.
  • 49. Sorensen T.L., Sellebjerg F., Jensen C.V i wsp.: Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis. Eur. J. Neurol. 2001; 8: 665-672.
  • 50. Narikawa K., Misu T., Fujihara K. i wsp.: CSF chemokine levels in relapsing neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 2004; 149: 182-186.
  • 51. Kastenbauer S., Koedel U., WickM. iwsp.: CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J. Neuroimmunol. 2003; 137: 210-217.
  • 52. Hulshof S., van Haastert E.S., Kuipers H.F. i wsp.: CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control versus multiple sclerosis. J. Neu-ropathol. Exp. Neurol. 2003; 62: 899-907.
  • 53. McManus C., Berman J.W., Brett F.M. i wsp.: MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol. 1998; 86: 20-29.
  • 54. Simpson J.E., Newcombe J., Cuzner M.L., Woodroofe M.N.: Expression of monocyte chemoattractant protein-1 and other β-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J. Neuroimmunol. 1998; 84: 238-249.
  • 55. Van Der Voorn P, Tekstra J., Beelen R.H. i wsp.: Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am. J. Pathol. 1999; 154: 45-51.
  • 56. Ambrosini E., Remoli M.E., Giacomini E. i wsp.: Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 2005; 64: 706-715.
  • 57. Krumbholz M., Theil D., Derfuss T. i wsp.: BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 2005; 201: 195-200.
  • 58. Krumbholz M., Theil D., Steinmeyer F. i wsp.: CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J. Neuroimmunol. 2007; 190: 72-79.
  • 59. Pashenkov M., Soderstrom M., Link H.: Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol. 2003; 135: 154-160.
  • 60. Simpson J.E., Newcombe J., Cuzner M.L., Woodroofe M.N.: Expression of the interferon^-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 2000; 26: 133-142.
  • 61. Balashov K.E., Rottman J.B., Weiner H.L., Hancock WW: CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands ΜΣΡ-1α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA 1999; 96: 6873-6878.
  • 62. Szczuciński A., Losy J.: Long-term effect of IFN-β 1a therapy on CCL2 (MCP-1) chemokine in patients with multiple sclerosis. Folia Neuropathol. 2004; 42: 15-18.
  • 63. Losy J., Michałowska-Wender G., Kurdyńska A., Wen-der M.: CCL2 (MCP-1) and CCL5 (RANTES) levels in the peripheral blood of multiple sclerosis patients treated with Glatiramer Acetate (Copaxone). Folia Neuropathol. 2005; 43: 153-155.
  • 64. Buttmann M., Merzyn C., Rieckmann P: Interferon-β induces transient systemic IP-10/CXCL10 chemokine release in patients with multiple sclerosis. J. Neuroim-munol. 2004; 156: 195-203.
  • 65. Buttmann M., Goebeler M., Toksoy A. i wsp.: Subcutaneous interferon-β injections in patients with multiple sclerosis initiate inflammatory skin reactions by local chemo-kine induction. J. Neuroimmunol. 2005; 168: 175-182.
  • 66. Simpson J., Rezaie P, Newcombe J. i wsp.: Expression of the β-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J. Neu-roimmunol. 2000; 108: 192-200.
  • 67. Bielecki B., Mazurek A., Wolinski P, Glabinski A.: Treatment of multiple sclerosis with methylprednisolone and mitoxantrone modulates the expression of CXC Chemo-kine receptors in PBMC. J. Clin. Immunol. 2008; 28: 122-130 [Epub. 25 października 2007 r.].
  • 68. Eikelenboom M.J., Killestein J., Izeboud T. i wsp.: Chemo-kine receptor expression on T cells is related to new lesion development in multiple sclerosis. J. Neuroimmunol. 2002; 133: 225-232.
  • 69. Sorensen T.L., Sellebjerg F.: Distinct chemokine receptor and cytokine expression profile in secondary progressive MS. Neurology 2001; 57: 1371-1376.
  • 70. Trebst C., Sorensen T.L., Kivisakk P i wsp.: CCR1 +/ CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 2001; 159: 1701-1710.
  • 71. Kivisakk P, Trebst C., Liu Z. i wsp.: T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin. Exp. Immunol. 2002; 129: 510-518.
  • 72. Jalonen T.O., Pulkkinen K., Ukkonen M. i wsp.: Differential intracellular expression of CCR5 and chemokines in multiple sclerosis subtypes. J. Neurol. 2002; 249: 576-583.
  • 73. Mahad D.J., Lawry J., Howell S.J., Woodroofe M.N.: Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Mult. Scler. 2003; 9: 189-198.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-9a8197a4-c871-48a7-a87e-b95f8663432d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.