Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 13 | 3 | 208–216

Article title

Wykrywanie białka prionu w płynach ustrojowych – nowe perspektywy w diagnostyce choroby Creutzfeldta-Jakoba

Content

Title variants

EN
Detection of prion protein in body fluids: new perspectives in Creutzfeldt-Jakob disease diagnostics

Languages of publication

PL

Abstracts

PL
Choroba Creutzfeldta-Jakoba (Creutzfeldt-Jakob disease, CJD) należy do grupy chorób wywołanych przez priony, których diagnostyka nastręcza trudności ze względu na brak nieinwazyjnych metod umożliwiających przyżyciowe definitywne rozpoznanie. Rutynowe badania laboratoryjne wspomagające diagnostykę polegają na oznaczaniu obecności białka 14-3-3 w płynie mózgowo-rdzeniowym. Białko to jest jednak jedynie nieswoistym markerem rozpadu neuronów. Również badania obrazowe oraz EEG są niewystarczające do pewnego potwierdzenia rozpoznania. Obecnie duże nadzieje wiąże się z rozwojem czułych i swoistych metod wykrywania śladowych ilości nieprawidłowych konformerów białka PrPSc – markera jednoznacznie związanego z chorobami wywołanymi przez priony – znajdujących się w płynie mózgowo-rdzeniowym lub krwi chorych z CJD. W artykule omówiono opracowane w ostatnich latach metody, w których wykorzystuje się zdolność białka prionu do indukowania przekształcenia struktury przestrzennej cząsteczek PrPc w patologiczną izoformę PrPSc. Największe nadzieje na praktyczne zastosowanie budzi obecnie metoda konwersji indukowanej przez wytrząsanie (quaking-induced conversion, QuIC), oparta na amplifikacji nieprawidłowych konformerów białka prionu w warunkach in vitro z zastosowaniem oczyszczonego zrekombinowanego białka PrPc jako substratu. Omówiono zasadę metody, wyniki najnowszych badań nad jej optymalizacją oraz perspektywy wykorzystania w celach diagnostycznych i naukowych.
EN
The diagnostics of prion diseases, including Creutzfeldt-Jakob disease (CJD), is still challenging as none of currently available tests, including magnetic resonance imaging, electroencephalogram and detection of 14-3-3 protein in cerebrospinal fluid, are sufficient for definite premortem diagnosis. This paper presents sensitive methods based on the ability of PrPSc protein to induce the PrPc to PrPSc conversion in vitro which have been developed within the last few years in order to detect trace amounts of the abnormal prion protein in cerebrospinal fluid or blood. Among those methods, the quaking-induced conversion (QuIC) with the use of purified recombined PrPc protein as a substrate seems to be the most promising. We discuss the current research in optimization of the method as well as the perspectives of its possible applications in diagnostics and scientific investigations.

Discipline

Year

Volume

13

Issue

3

Pages

208–216

Physical description

Contributors

author
  • Zakład Patologii Molekularnej i Neuropatologii, Uniwersytet Medyczny w Łodzi
  • Zakład Patologii Molekularnej i Neuropatologii, Uniwersytet Medyczny w Łodzi, nstytut Nauk o Zdrowiu, Państwowa Wyższa Szkoła Zawodowa w Płocku

References

  • 1. Prusiner S.B.: Molecular biology of prion diseases. Science 1991; 252: 1515–1522.
  • 2. Will R.G., Ironside J.W., Zeidler M. i wsp.: A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996; 347: 921–925.
  • 3. Blättler T.: Implications of prion diseases for neurosurgery. Neurosurg. Rev. 2002; 25: 195–203.
  • 4. Kovács G.G., Puopolo M., Ladogana A. i wsp.: Genetic prion disease: the EUROCJD experience. Hum. Genet. 2005; 118: 166–174.
  • 5. Will R.G., Alperovitch A., Poser S. i wsp.: Descriptive epidemiology of Creutzfeldt-Jakob disease in six European countries, 1993–1995. EU Collaborative Study Group for CJD. Ann. Neurol. 1998; 43: 763–767.
  • 6. National Creutzfeldt-Jakob Disease Surveillance diagnostic criteria. Adres: www.cjd.ed.ac.uk/criteria.htm.
  • 7. CDC’s Diagnostic Criteria for Creutzfeldt-Jakob Disease (CJD), 2010, Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, USA. Adres: www.cdc.gov/ncidod/dvrd/cjd/diagnostic_criteria.html.
  • 8. Van Everbroeck B., Quoilin S., Boons J. i wsp.: A prospective study of CSF markers in 250 patients with possible Creutzfeldt- Jakob disease. J. Neurol. Neurosurg. Psychiatry 2003; 74: 1210–1214.
  • 9. Lemstra A.W., van Meegen M.T., Vreyling J.P. i wsp.: 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 2000; 55: 514–516.
  • 10. Huang N., Marie S.K., Livramento J.A. i wsp.: 14-3-3 protein in the CSF of patients with rapidly progressive dementia. Neurology 2003; 61: 354–357.
  • 11. Cuadrado-Corrales N., Jiménez-Huete A., Albo C. i wsp.: Impact of the clinical context on the 14-3-3 test for the diagnosis of sporadic CJD. BMC Neurol. 2006; 6: 25.
  • 12. Zerr I., Pocchiari M., Collins S. i wsp.: Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt- Jakob disease. Neurology 2001; 56: 1422–1423.
  • 13. Muayqil T., Gronseth G., Camicioli R.: Evidence-based guideline: diagnostic accuracy of CSF 14-3-3 protein in sporadic Creutzfeldt-Jakob disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology 2012; 79: 1499–506.
  • 14. Parchi P., Capellari S.: Prion disease: diagnostic value of cerebrospinal fluid markers. Nat. Rev. Neurol. 2013; 9: 10–11.
  • 15. Chitravas N., Jung R.S., Kofskey D.M. i wsp.: Treatable neurological disorders misdiagnosed as Creutzfeldt-Jakob disease. Ann. Neurol. 2011; 70: 437–444.
  • 16. Zerr I., Schulz-Schaeffer W.J., Giese A. i wsp.: Current clinical diagnosis in Creutzfeldt-Jakob disease: identification of uncommon variants. Ann. Neurol. 2000; 48: 323–329.
  • 17. Green A.J.: Use of 14-3-3 in the diagnosis of Creutzfeldt- Jakob disease. Biochem. Soc. Trans. 2002; 30: 382–386.
  • 18. Boesenberg-Grosse C., Schulz-Schaeffer W.J., Bodemer M. i wsp.: Brain-derived proteins in the CSF: do they correlate with brain pathology in CJD? BMC Neurol. 2006; 6: 35.
  • 19. Giraud P., Biacabe A.G., Chazot G. i wsp.: Increased detection of 14-3-3 protein in cerebrospinal fluid in sporadic Creutzfeldt- Jakob disease during the disease course. Eur. Neurol. 2002; 48: 218–221.
  • 20. Geschwind M.D., Martindale J., Miller D. i wsp.: Challenging the clinical utility of the 14-3-3 protein for the diagnosi s of sporadic Creutzfeldt-Jakob disease. Arch. Neurol. 2003; 60: 813–816.
  • 21. Green A.J., Thompson E.J., Stewart G.E. i wsp.: Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J. Neurol. Neurosurg. Psychiatry 2001; 70: 744–748.
  • 22. Steinhoff B.J., Zerr I., Glatting M. i wsp.: Diagnostic value of periodic complexes in Creutzfeldt-Jakob disease. Ann. Neurol. 2004; 56: 702–708.
  • 23. Collins S.J., Sanchez-Juan P., Masters C.L. i wsp.: Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 2006; 129: 2278–2287.
  • 24. Tschampa H.J., Neumann M., Zerr I. i wsp.: Patients with Alzheimer’s disease and dementia with Lewy bodies mistaken for Creutzfeldt-Jakob disease. J. Neurol. Neurosurg. Psychiatry 2001; 71: 33–39.
  • 25. Young G.S., Geschwind M.D., Fischbein N.J. i wsp.: Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am. J. Neuroradiol. 2005; 26: 1551–1562.
  • 26. Heinemann U., Krasnianski A., Meissner B. i wsp.: Molecular subtype-specific clinical diagnosis of prion diseases. Vet. Microbiol. 2007; 123: 328–335.
  • 27. Hunter N., Foster J., Chong A. i wsp.: Transmission of prion diseases by blood transfusion. J. Gen. Virol. 2002; 83: 2897–2905.
  • 28. WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies. Updated 2010. Adres: www.who.int/bloodproducts/tablestissueinfectivity.pdf.
  • 29. Editorial team. Fourth case of transfusion-associated vCJD infection in the United Kingdom. Euro Surveill. 2007; 12: E070118.4. Adres: www.eurosurveillance.org/ViewArticle. aspx?ArticleId=3117.
  • 30. Wilham J.M., Orrú C.D., Bessen R.A. i wsp.: Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010; 6: e1001217.
  • 31. Kocisko D.A., Come J.H., Priola S.A. i wsp.: Cell-free formation of protease-resistant prion protein. Nature 1994; 370: 471–474.
  • 32. Kocisko D.A., Priola S.A., Raymond G.J. i wsp.: Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl Acad. Sci. USA 1995; 92: 3923–3927.
  • 33. Soto C., Saborio G.P., Anderes L.: Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends Neurosci. 2002; 25: 390–394.
  • 34. Saborio G.P., Permanne B., Soto C.: Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001; 411: 810–813.
  • 35. Bieschke J., Weber P., Sarafoff N. i wsp.: Autocatalytic self-propagation of misfolded prion protein. Proc. Natl Acad. Sci. USA 2004; 101: 12207–12211.
  • 36. Soto C., Anderes L., Suardi S. i wsp.: Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Lett. 2005; 579: 638–642.
  • 37. Jones M., Peden A.H., Prowse C.V. i wsp.: In vitro amplification and detection of variant Creutzfeldt-Jakob disease PrPSc. J. Pathol. 2007; 213: 21–26.
  • 38. Castilla J., Saá P., Hetz C., Soto C.: In vitro generation of infectious scrapie prions. Cell 2005; 121: 195–206.
  • 39. Saá P., Castilla J., Soto C.: Presymptomatic detection of prions in blood. Science 2006; 313: 92–94.
  • 40. Thorne L., Terry L.A.: In vitro amplification of PrPSc derived from the brain and blood of sheep infected with scrapie. J. Gen. Virol. 2008; 89: 3177–3184.
  • 41. Saá P., Castilla J., Soto C.: Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 2006; 281: 35245–35252.
  • 42. Atarashi R., Moore R.A., Sim V.L. i wsp.: Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods 2007; 4: 645–650.
  • 43. Atarashi R., Wilham J.M., Christensen L. i wsp.: Simplified ultrasensitive prion detection by recombinant PrP conversion with shaking. Nat. Methods 2008; 5: 211–212.
  • 44. Orrú C.D., Wilham J.M., Hughson A.G. i wsp.: Human variant Creutzfeldt-Jakob disease and sheep scrapie PrPres detection using seeded conversion of recombinant prion protein. Protein Eng. Des. Sel. 2009; 22: 515–521.
  • 45. Colby D.W., Hang Q., Wang S. i wsp.: Prion detection by an amyloid seeding assay. Proc. Natl Acad. Sci. USA 2007; 104: 20914–20919.
  • 46. Atarashi R., Satoh K., Sano K. i wsp.: Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 2011; 17: 175–178.
  • 47. Atarashi R., Sano K., Satoh K. i wsp.: Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion 2011; 5: 150–153.
  • 48. Orrú C.D., Wilham J.M., Raymond L.D. i wsp.: Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. MBio 2011; 2: e00078–11.
  • 49. Peden A.H., McGuire L.I., Appleford N.E. i wsp.: Sensitive and specific detection of sporadic Creutzfeldt-Jakob disease brain prion protein using real-time quaking-induced conversion. J. Gen. Virol. 2012; 93: 438–449.
  • 50. Orrù C.D., Wilham J.M., Vascellari S. i wsp.: New generation QuIC assays for prion seeding activity. Prion 2012; 6: 147–152.
  • 51. McGuire L.I., Peden A.H., Orrú C.D. i wsp.: Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann. Neurol. 2012; 72: 278–285.
  • 52. Higuma M., Sanjo N., Satoh K. i wsp.: Relationships between clinicopathological features and cerebrospinal fluid biomarkers in Japanese patients with genetic prion diseases. PLoS One 2013; 8: e60003.
  • 53. Sano K., Satoh K., Atarashi R. i wsp.: Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS One 2013; 8: e54915.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e632a383-b8d8-4cd0-a160-d72c87b2c17d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.