Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 21 | 93-103

Article title

ISOLATION, MOLECULAR CLONING AND CHARACTERISATION OF TWO GENES CODING CHITIN DEACETYLASE FROM MUCOR CIRCINELLOIDES IBT-83

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan is a linear N-deacetylated derivative of chitin, soluble in acetic solutions. The deacetylation of chitin can be achieved enzymatically using chitin deacetylase (ChDa) (EC 3.5.1.41), which hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin and chitosan. Complementary DNA (cDNA), which encodes ChDa, was isolated from M. rouxii s well as other fungi. Chitin deacetylase activity was detected in partially purified and concentrated crude extract of the protein from Mucor circinelloides IBT-83. Additionally, two open reading frames (ORF), putatively encoding ChDa, were identified and amplified from cDNA of this strain. Each ORF was molecularly cloned and sequenced. Amino acid sequences of ChDaI and ChDaII were predicted, using nucleotide sequences of these cDNA clones, and analysed by means of bioinformatics tools.

Year

Volume

21

Pages

93-103

Physical description

Contributors

  • Institute of Technical Biochemistry, Lodz University of Technology ul. Stefanowskiego 4/10, 90-924 Łódź
  • Institute of Technical Biochemistry, Lodz University of Technology ul. Stefanowskiego 4/10, 90-924 Łódź
  • Institute of Technical Biochemistry, Lodz University of Technology ul. Stefanowskiego 4/10, 90-924 Łódź
  • Institute of Technical Biochemistry, Lodz University of Technology ul. Stefanowskiego 4/10, 90-924 Łódź
  • Institute of Technical Biochemistry, Lodz University of Technology ul. Stefanowskiego 4/10, 90-924 Łódź

References

  • [1] Rinaudo M; (2006) Chitin and chitosan: Properties and applications. Progress In Polymer Science, 31, 603-632. DOI:10.1016/j.progpolymsci.2006.06.001
  • [2] Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Monteiro MJ, Pintado ME, et al. (2008) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiology, 25, 922-928. DOI:10.1016/j.fm.2008.05.003
  • [3] Wang Y, Zhou P, Yu J, Pan X, Wang , Lan W, et al.; (2007) Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pacific Journal of Clinical Nutrition, 16, 174-177
  • [4] Yang EJ, Kim JG, Kim JY, Kim S, Lee N; (2010) Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Central European Journal of Biology, 5, 95-102. DOI: 10.2478/s11535-009-0065-5
  • [5] Quan H, Zhu F, Han X, Xu Z, Zhao Y, Miao Z; (2009) Mechanism of antiangiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity. Medical Hypotheses, 73, 205-206. DOI: http://dx.doi.org/10.1016/j.mehy.2009.02.018
  • [6] Pangestuti R, Kim SK; (2010) Neuroprotective properties of chitosan and its derivatives. Marine Drugs, 8, 2117-2128. DOI: 10.3390/md8072117
  • [7] Trudel J, Asselain A; (1990) Detection of chitin deacetylase activity after polyacrylamide gel electrophoresis. Analytical Biochemistry, 189, 249–253.
  • [8] Araki Y, Ito E; (1975) A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. EuropeanJournal Of Biochemistry, 55, 71–78. DOI: 10.1111/j.1432-1033.1975.tb02139.x
  • [9] Alfonso C, Nuero OM, Santamaria F, Reyes F; (1995) Purification of a heat-stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation. Current Microbiology, 30, 49–54
  • [10] Gao XD, Katsumoto T, Onodera K; (1995) Purification and characterization of chitin deacetylase from Absidia coerulea. Journal of Biochemistry, 117, 257–63. DOI: http://doi.org/10.1093/jb/117.2.257
  • [11] Blair DE; (2006) Structure and Mechanism of Chitin Deacetylase from the Fungal Pathogen Colletotrichum lindemuthianum. Biochemistry, 45, 9416-9426. DOI: 10.1021/bi0606694
  • [12] Aruchami M, Gowri N, Sundara-Rajulu G; (1986) Chitin deacetylases in invertebrates. In: Muzzarelli R, Jeuniaux C, Gooday GW, editors; Chitin in nature and technology, 263–268. DOI: 10.1007/978-1-4613-2167-5_34
  • [13] Zhao Y, Park R, Muzzarelli R; (2010) Chitin deacetylases: Properties and applications. Marine Drugs, 8, 24–46. DOI: 10.3390/md8010024
  • [14] Davis LL, Bartnicki-Garcia S; (1984) Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry , 23, 1065–1073, DOI: 10.1021/bi00301a005
  • [15] Jeraj N, Kunic B, Lenasi H, Breskvar K; (2006) Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans. Enzyme and Microbial Technology, 39, 1294–1299. DOI:10.1016/j.enzmictec.2006.03.017
  • [16] Nahar P, Ghormade V, Deshpande MV; (2004). The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: Possible edge to entomopathogenic fungi in the biological control of insect pests. Journal Of Invertebrate Pathology, 85, 80–88. DOI:10.1016/j.jip.2003.11.006
  • [17] Kafetzopoulos D, ThireosG, Vournakis JN, BouriotisV; (1993) The primary structure of a fungal chitin deacetylase reveals the function for two bacterial geneproducts. Proceedings of the National Academy of Sciences USA, 90, 8005–8008.
  • [18] Tokuyasu K, Ohnishi-Kameyama M, Hayashi K, Mori Y; (1999) Cloning and expression of chitin deacetylase gene from a Deuteromycete, Colletotrichum lindemuthianum. Journal Of Bioscience And Bioengineering,87, 418–423. DOI:10.1016/S1389-1723(99)80088-7
  • [19] Maw T, Tan TK, Khor E, Wong SM; (2002) Complete cDNA sequence of chitin deacetylase from Gongronella butleri and its phylogenetic analysis revealed clusters corresponding to taxonomic classification of fungi. Journal Of Bioscience And Bioengineering, 93, 376–81. DOI:10.1016/S1389-1723(02)80070-6
  • [20] Struszczyk K, Szczęsna-Antczak M, Pomianowska E, Walczak M, Antczak T; (2009) Isolation and purification of Mucor circinelloides intracellular chitosanolytic enzymes. Carbohydrate Polymers, 78, 16-24. DOI:10.1016/j.carbpol.2009.04.010
  • [21] Struszczyk K, Szczęsna-Antczak M, Walczak M, Antczak T; (2008) Isolation and purification of Mucor circinelloides intracellular chitosanolytic enzymes. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XIII, 107–116.
  • [22] Struszczyk KJ, Szczęsna-Antczak, Antczak T, Gajewska M; (2007) In situ immobilized chitosanolytic enzyme from Mucor circinelloides. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XII, 157–164.
  • [23] Struszczyk K, Szczęsna-Antczak M, Walczak M, Pomianowska E, Antczak T; (2009) Enzymatic preparations from Mucor moulds and their application in oligoaminosaccharides production. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XIV, 89-100.
  • [24] Struszczyk K, Szczęsna Antczak M, Pomianowska E, Stańczyk Ł, Wojciechowska J, Antczak Tadeusz (2010) Process of continuous production of oligoaminosaccharides in a column reactor. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XV, 177-188.
  • [25] Ronald MA; (2006). Microbiological media for the examination of food. Second edition, Taylor & Francis Group
  • [26] Jaworska MM, Konieczna E; (2006) Stability of chitin deacetylase. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XI, 15–19
  • [27] Taylor EJ, Gloster TM, Turkenburg J P, Vincent F, Brzozowsk, AM, Dupont C, Shareck F, Centeno MS, Prates JA, Puchart V, Ferreira LM, Fontes CM, Biely P, Davies GJ; (2006) Structure and activity of two metal ion dependent acetyl xylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. Journal Of Biological Chemistr, 281, 10968-10975. DOI: 10.1074/jbc.M513066200
  • [28] Zhao Y, et al.; (2010) Production and characterization of extracellular chitin deacetylase from Absidia corymbifera DY–9, Journal of the Korean Society for Applied Biological Chemistry, 53(2):119–126. DOI: 10.3839/jksabc.2010.021
  • [29] Blair DE, Schuttelkopf AW, Macrae JI, van Aalten DM; (2005) Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proceedings of the National Academy of Science, 102, 15429-15434. DOI: 10.1073/pnas.0504339102

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-6cd48d57-b2ca-4aa9-85d4-916666ab49bf
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.