Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 21 | 217-223

Article title

CELL BINDING AND PENETRATION OF QUATERNIZED CHITOSAN DERIVATIVES

Content

Title variants

Languages of publication

EN

Abstracts

EN
Chitosan (Ch) is an attractive biopolymer with multiple reactive groups. However it is poorly soluble at neutral pH. Quaternization improves its solubility and permits the development of various positively charged drug delivery systems. The aim of this work was to study the solubility, toxicity, cell binding, and penetration of 20 kDa chitosan with 9, 40, 58 and 98% of quaternary ammonium group substitution (ChQ1 to ChQ4 accordingly). We showed that ChQ with substitution degree >40% was soluble in a wide pH range. Unexpectedly ChQ2 and ChQ3 were more toxic to cells than Ch, ChQ1 and ChQ4. Higher toxicity of ChQ was found against macrophage like cell line RAW264.7 than against epithelial cells MiaPaCa-2. All ChQ, in contrast to unmodified Ch, easily bound and penetrated the cells with the highest uptake by ChQ4. Thus, quaternized chitosan derivatives can be used for biomedical applications.

Year

Volume

21

Pages

217-223

Physical description

Contributors

  • nstitute of Bioengineering, Research Center of Biotechnology RAS, 33, bld. 2 Leninsky Ave., Moscow, Russian Federation
  • nstitute of Bioengineering, Research Center of Biotechnology RAS, 33, bld. 2 Leninsky Ave., Moscow, Russian Federation
  • nstitute of Bioengineering, Research Center of Biotechnology RAS, 33, bld. 2 Leninsky Ave., Moscow, Russian Federation
  • Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10, Miklukho-Maklaya St., GSP-7, Moscow, Russian Federation

References

  • [1] Ngo D.-H., Vo T.-S., Ngo D.-N., Kang K.-H., Je J.-Y., Pham H.N.-D., Byung H.-G., Kima S.-K. ; (2015) Biological effects of chitosan and its derivatives. Food Hydrocoll. 51, 200–216. DOI:10.1016/j.foodhyd.2015.05.023.
  • [2] Mourya V.K., Inamdar N.N.; (2008) Chitosan-modifications and applications : Opportunities galore. React Funct Polym. 68, 1013–1051. DOI:10.1016/j.reactfunctpolym.2008.03.002.
  • [3] Domard A., Rinaudo M., Terrassin C.; (1986) New method for the quaternization of chitosan. Int J Biol Macromol. 8, 105–107. DOI:10.1016/0141-8130(86)90007-3.
  • [4] Stepnova E.A., Tikhonov V.E., Babushkina T.A., Klimova T.P., Vorontsov E. V., Babak V.G., Lopatin S.A., Yamskov I.A.; (2007) New approach to the quaternization of chitosan and its amphiphilic derivatives. Eur Polym J. 43, 2414–2421. DOI:10.1016/j.eurpolymj.2007.02.028.
  • [5] Belalia R., Grelier S., Benaissa M., Coma V.; (2008) New Bioactive Biomaterials Based on Quaternized Chitosan. J Agric Food Chem. 56, 1582–1588. DOI:10.1021/jf071717.
  • [6] Huang J., Cheng Z.-H., Xie H.-H., Gong J.-Y., Lou J., Ge Q., Wang Y.J., Wu Y.F., Liu S.W., Sun P.L., Mao J.W.; (2014) Effect of quaternization degree on physiochemical and biological activities of chitosan from squid pens. Int J Biol Macromol. 70, 545–550. DOI:10.1016/j.ijbiomac.2014.07.017
  • [7] Thanou M., Florea B.I., Geldof M., Junginger H.E., Borchard G.; (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23, 153–159. DOI:10.1016/S0142-9612(01)00090-4
  • [8] Thanou M., Kotzé A., Scharringhausen T., Lueßen H., de Boer A., Verhoef J., Junginger H.E.; (2000). Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release. 64, 15–25. DOI:10.1016/S0168-3659(99)00131-5
  • [9] Benediktsdóttir B.E., Gudjónsson T., Baldursson Ó., Másson M.; (2014) N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur J Pharm Biopharm. 86, 55–63. DOI:10.1016/j.ejpb.2013.04.002
  • [10] Shagdarova B.Ts., Il'ina A.V., Varlamov V.P.; (2016) Antibacterial Activity of Alkylated and Acylated Derivatives of Low – Molecular Weight Chitosan. Appl. Biochem. Microbiol. 52, 222–225. DOI:10.1134/S0003683816020149.
  • [11] Peng Z.-X., Wang L., Du L., Guo S.-R., Wang X.-Q., Tang T.-T.; (2010) Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr Polym. 81, 275–283. DOI:10.1016/j.carbpol.2010.02.008.
  • [12] Denizot F., Lang R.; (1986) Rapid colorimetric assay for cell growth and survival. J Immunol Methods. 89, 271–277. DOI:10.1016/0022-1759(86)90368-6.
  • [13] Huang M., Khor E., Lim L.; (2004) Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles : Effects of Molecular Weight and Degree of Deacetylation. Pharm Res. 21, DOI:344–353. 10.1023/B:PHAM.0000016249.52831.a5.
  • [14] Jintapattanakit A., Mao S., Kissel T., Junyaprasert V.B.; (2008) Physicochemical properties and biocompatibility of N-trimethyl chitosan: Effect of quaternization and dimethylation. Eur J Pharm Biopharm. 70, 563–571. DOI:10.1016/j.ejpb.2008.06.002.
  • [15] Zubareva A., Shcherbinina T., Varlamov V., Svirshchevskaya E.; (2015) Intracellular sorting of differently charged chitosan derivatives and chitosan-based nanoparticles. Nanoscale 7, 7942–7952. DOI:10.1039/c5nr00327j.
  • [16] Tammam S.N., Azzazy H.M.E., Lamprecht A.; (2015) A high throughput method for quantification of cell surface bound and internalized chitosan nanoparticles. Int J Biol Macromol. 81, 858–866. DOI:10.1016/j.ijbiomac.2015.09.021.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-056cf925-1493-49b0-8173-1177ff240f9e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.