Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 11 | 4 | 265-273

Article title

Patogeneza rozwoju blaszki miażdżycowej w tętnicach szyjnych

Content

Title variants

EN
Pathogenesis of development of atheromatous plaque in carotid arteries

Languages of publication

PL

Abstracts

PL
Badania naukowe pokazują, że zmiany miażdżycowe mogą rozwijać się jednocześnie w różnych naczyniach. Charakter i mechanizm powstawania tych zmian jest bardzo podobny. Miażdżyca to proces chorobowy, którego istotą jest nadmierna, zapalno-proliferacyjna odpowiedź na uszkodzenie ściany tętnicy. Proces zapalny toczący się w obrębie ściany naczynia wiąże się z rozwojem niestabilnych zmian miażdżycowych. Blaszka tego typu cechuje się bogatszym unaczynieniem, cieńszą, podatną na pęknięcia czapeczką włóknistą oraz zwiększoną liczbą komórek zapalnych. Rdzeń lipidowy blaszki staje się obszerny i bogaty w płynne estry cholesterolowe. Nieprawidłowe i rozrastające się naczynia są głównym źródłem wylewów do blaszki i jej obrzeża, co w efekcie prowadzi do jej pęknięcia. W procesie rozwoju blaszek miażdżycowych biorą udział różnorodne komórki układu immunologicznego, głównie monocyty, makrofagi, limfocyty T i B oraz komórki dendrytyczne. Ponadto udokumentowany został wpływ mediatorów zapalnych, a także czynników wzrostu na rozwój blaszek miażdżycowych. Znalezienie markerów zapalnego podłoża destabilizacji blaszek miażdżycowych w surowicy może stanowić istotne uzupełnienie badań diagnostycznych stosowanych w rozpoznawaniu i monitorowaniu leczenia udaru niedokrwiennego mózgu. Poznanie udziału komórek układu immunologicznego w rozwoju miażdżycy może pozwolić na dokładniejsze zrozumienie mechanizmu powstawania blaszek miażdżycowych oraz przyczynić się do wprowadzenia nowych metod leczenia miażdżycy i jej powikłań, w tym udaru niedokrwiennego mózgu.
EN
It is scientifically confirmed that atherosclerosis simultaneously develops in the whole arterial system. The mechanism and character of atherosclerotic plaque formation is similar in different regions of the vascular system. The essence of atherosclerosis pathogenesis appears to be an excessive inflammatory and fibroproliferative response to various forms of arterial wall injury. The development of unstable atheromatous plaques is closely related to the inflammatory process involving the arterial wall. Immunological factors seem to play an important role in the development of atherosclerotic plaques and their destabilization. Unstable plaque is characterized by higher blood supply, thinner and more fragile fibrous layer and higher number of inflammatory cells. Lipid core of plaque is bigger and more rich in liquid cholesterol esters. Pathological and growing vessels are the main source of bleeding to plaque what leads to its rupture. Cytokines and growth factors have a strong impact on activation of atheromatous plaque. Finding of inflammatory markers of plaque destabilisation in blood serum may be an additional diagnostic tool useful for diagnosis and monitoring of stroke management. It should be stressed that a closer look at participation of the immune system in pathogenesis of artherosclerosis may contribute to a development of the new therapies of this pathology and its complications like ischaemic stroke.

Discipline

Year

Volume

11

Issue

4

Pages

265-273

Physical description

Contributors

  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym, Uniwersytet Medyczny w Łodzi
  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym, Uniwersytet Medyczny w Łodzi

References

  • 1. Hambry R.I., Tabrah F., Wisoff B.G., Hartstein M.L.: Coronary artery calcification: clinical implications and angiographic correlates. Am. Heart J. 1974; 87: 565-570.
  • 2. Naghavi M., Libby P., Falk E. i wsp.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664-1672.
  • 3. Schmermund A., Erbel R.: Unstable coronary plaque and its relation to coronary calcium. Circulation 2001; 104: 1682-1687.
  • 4. Naghavi M., Libby P., Falk E. i wsp.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108: 1772-1778.
  • 5. Maseri A., Fuster V.: Is there a vulnerable plaque? Circulation 2003; 107: 2068-2071.
  • 6. Ross R.: Atherosclerosis – an inflammatory disease. N. Engl. J. Med. 1999; 340: 115-126.
  • 7. Pearson T.A., Mensah G.A., Alexander R.W. i wsp.: Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003; 107: 499-511.
  • 8. Libby P., Ridker P.M.: Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am. J. Med. 2004: 116 supl. 6A: 9S-16S.
  • 9. Ross R.: Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. J. Am. Pathol. 1993; 143: 987-1002.
  • 10. Członkowska A., Gromadzka G.: Związek czynników immunologicznych z etiopatogenezą i przebiegiem klinicznym udaru mózgu. Neurol. Neurochir. Pol. 2000; 34 supl.: 13-26.
  • 11. Kaźmierski R., Kozubski W.: Wpływ zakażenia bakterią Chlamydia pneumoniae na rozwój miażdżycy tętnic domózgowych. Neurol. Neurochir. Pol. 2002; 36: 131-142.
  • 12. Kuvin J.T., Kimmelstiel C.D.: Infectious causes of atherosclerosis. Am. Heart J. 1999; 137: 216-226.
  • 13. Libby P., Egan D., Skarlatos S.: Roles of infectious agents in atherosclerosis and restenosis: an assessment of the evidence and need for future research. Circulation 1997; 96: 4095-4103.
  • 14. Ezzahiri R., Stassen F.R.M., Kurvers H.A.J.M. i wsp.: Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice. Eur. J. Vasc. Endovasc. Surg. 2003; 26: 88-95.
  • 15. Kalimo H., Kaste M., Haltia M.: Vascular diseases. W: Graham D.I., Lantos P.L. (red.): Greenfield’s Neuropathology. Wyd. 7. Arnold, Londyn 2002: 281-355.
  • 16. Weissberg P.: Mechanisms modifying atherosclerotic disease – from lipids to vascular biology. Atherosclerosis 1999; 147: 3-10.
  • 17. Beręsewicz A., Kurzelewski M.: Patofizjologia ostrych zespołów wieńcowych. Medipress Kardiologia 2001; 8: 3-11.
  • 18. Filipiak K.J., Opolski G.: Patofizjologia ostrych zespołów wieńcowych. W: Opolski G., Filipiak K.J., Poloński L. (red.): Ostre zespoły wieńcowe. Wyd. 1. Urban & Partner, Wrocław 2002: 14-31.
  • 19. de Boer O.J., van der Wal A.C., Teeling P., Becker A.E.: Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? Cardiovasc. Res. 1999; 41: 443-449.
  • 20. Jeziorska M., Woolley D.E.: Local neovascularization and cellular composition within vulnerable regions of atherosclerotic plaques of human carotid arteries. J. Pathol. 1999; 188: 189-196.
  • 21. Anwar A., Zahid A.A., Scheidegger K.J. i wsp.: Tumor necrosis factor-alpha regulates insulin-like growth factor-1 and insulin-like growth factor binding protein-3 expression in vascular smooth muscle. Circulation 2002; 105: 1220-1225.
  • 22. Gupta S., Pablo A.M., Jiang X. i wsp.: IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 1997; 99: 2752-2761.
  • 23. Libby P., Hansson G.K.: Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab. Invest. 1991; 64: 5-15.
  • 24. Nakajima T., Schulte S., Warrington K.J. i wsp.: T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 2002; 105: 570-575.
  • 25. Liuzzo G., Goronzy J.J., Yang H. i wsp.: Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 102: 2883-2888.
  • 26. Raines E.W., Rosenfeld M.E., Ross R.: The role of macrophages. W: Fuster V., Ross R., Topol E.J. (red.): Atherosclerosis and Coronary Artery Disease. Wyd. 1, Lippincott- Raven, Philadelphia 1996: 539-555.
  • 27. Hansson G.K., Jonasson L., Seifert P.S. i wsp.: Immune mechanisms in atherosclerosis. Arteriosclerosis 1989; 9:
  • 28. Lamb D.J., El-Sankary W., Ferns G.A.A.: Molecular mimicry in atherosclerosis: a role for heat shock proteins in immunisation. Atherosclerosis 2003; 167: 177-185.
  • 29. Lombardo A., Coli S., Natale L., Crea F.: Carotid plaque inflammation in a patient with unstable angina. Ital. Heart J. 2003; 4: 125-128.
  • 30. Silva J.A., White C.J.: Plaque instability in peripheral vessels. Prog. Cardiovasc. Dis. 2002; 44: 429-436.
  • 31. Espinola-Klein C., Rupprecht H.J., Blankenberg S. i wsp.: Manifestationen der Atherosklerose in verschiedenen Gefässregionen. Gemeinsamkeiten und Unterschiede hinsichtlich Epidemiologie, Ätiologie und Prognose. Med. Klin. 2002; 97: 221-228.
  • 32. Davies M.J.: Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 1996; 94: 2013-2020.
  • 33. Davies M.J., Thomas A.: Thrombosis and acute coronaryartery lesions in sudden cardiac ischemic death. N. Engl. J. Med. 1984; 310: 1137-1140.
  • 34. Lammie G.A., Sandercock P.A., Dennis M.S.: Recently occluded intracranial and extracranial carotid arteries. Relevance of the unstable atherosclerotic plaque. Stroke 1999; 30: 1319-1325.
  • 35. Hennerici M.G.: The unstable plaque. Cerebrovasc. Dis. 2004; 17: 17-22.
  • 36. Loftus I.M., Naylor A.R., Bell P.R., Thompson M.M.: Plasma MMP-9 – a marker of carotid plaque instability. Eur. J. Vasc. Endovasc. Surg. 2001; 21: 17-21.
  • 37. Engström G., Lind P., Hedblad B. i wsp.: Effects of cholesterol and inflammation-sensitive plasma proteins on incidence of myocardial infarction and stroke in men. Circulation 2002; 105: 2632-2637.
  • 38. Alvarez Garcia B., Ruiz C., Chacon P. i wsp.: High-sensitivity C-reactive protein in high-grade carotid stenosis: risk marker for unstable carotid plaque. J. Vasc. Surg. 2003; 38: 1018-1024.
  • 39. Ridker P.M.: Inflammatory biomarkers, statins, and the risk of stroke: cracking a clinical conundrum. Circulation 2002; 105: 2583-2585.
  • 40. Holven K.B., Halvorsen B., Schulz H. i wsp.: Expression of matrix metalloproteinase-9 in mononuclear cells of hyperhomocysteinaemic subjects. Eur. J. Clin. Invest. 2003; 33: 555-560.
  • 41. Schmitz S.A.: Eisenoxidverstärkte MRT inflammatorischer atherosklerotischer Läsionen: Übersicht experimenteller und erster klinischer Ergebnisse. Rofo Fortschr. Geb. Rontgenstr. Neuen Bildgeb. Verfahr. 2003; 175: 469-476.
  • 42. Tearney G.J., Yabushita H., Houser S.L. i wsp.: Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003; 107: 113-119.
  • 43. Carbone G.L., Mauriello A., Christiansen M. i wsp.: Unstable carotid plaque: biochemical and cellular marker of vulnerability. Ital. Heart J. 2003; 4: 398-406.
  • 44. Falk E., Shah P.K., Fuster V.: Coronary plaque disruption. Circulation 1995; 92: 657-671.
  • 45. Van der Wal A.C., Becker A.E., van der Loss C.M., Das P.K.: Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36-44.
  • 46. Stary H.C., Chandler A.B., Glagov S. i wsp.: A definition of initial, fatty streak and intermediate lesions of atherosclerosis. A report rom the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994; 89: 2462-2478.
  • 47. Stary H.C., Chandler A.B., Glagov S. i wsp.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355-1374.
  • 48. Stary H.C.: Natural history and histological classification lesions: an update. Arterioscler. Thromb. Vsc. Biol. 2000; 12: 555-560.
  • 49. Wexler L., Brundage B., Crouse J. i wsp.: Coronary artery clacification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996; 94: 1175-1192.
  • 50. Tintut Y., Demer L.L.: Recent advances in multifactorial regulation of vascular calcification. Curr. Opin. Lipidol. 2001; 12: 555-560.
  • 51. Bostrom K., Watson K.E., Stanford W.P., Demer L.L.: Atherosclerotic calcification: relation to developmental osteogenesis. Am. J. Cardiol. 1995; 75: 88B-91B.
  • 52. Tanimura A., McGregor D.H., Anderson H.C.: Calcification in atherosclerosis. I. Human studies. J. Exp. Pathol. 1986; 2: 261-273.
  • 53. Anderson H.C.: Mechanism of mineral formation in bone. Lab. Invest. 1989; 60: 320-330.
  • 54. Hirota S., Imakita M., Kohri K. i wsp.: Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. A possible association with calcification. Am. J. Pathol. 1993; 143: 1003-1008.
  • 55. Rekhter M.D., Zhang K., Narayanan A.S. i wsp.: Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am. J. Pathol. 1993; 143: 1634-1648.
  • 56. Fitzpatrick L.A., Severson A., Edwards W.D.D., Ingram R.T.: Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J. Clin. Invest. 1994; 94: 1597-1604.
  • 57. Fleet J.C., Hock J.M.: Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription- polymerase chain reaction. J. Bone Miner. Res. 1994; 9: 1565-1573.
  • 58. Shanahan C.M., Proudfoot D., Tyson K.L. i wsp.: Expression of mineralization-regulating proteins in association with human vascular calcification. Z. Kardiol. 2000; 89 supl. 2: 63-68.
  • 59. Berliner J.A., Navab M., Fogelman A.M. i wsp.: Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91: 2488-2496.
  • 60. Pawlikowski M., Pfitzer R., Wachowiak J.: Mineralization (calcification) of coronary arteries. Mater. Med. Pol. 1994; 26: 3-8.
  • 61. Proudfoot D., Shanahn C.M.: Biology of calcification in vascular cells: intima versus media. Herz 2001; 26: 245-251.
  • 62. Proudfoot D., Skepper J.N., Hegyi L. i wsp.: The role of apoptosis in the initiation of vascular calcification. Z. Kardiol. 2001; 90 supl. 3: 43-46.
  • 63. Mautner G.C., Mautner S.L., Froehlich J. i wsp.: Coronary artery calcification: assessment with electron beam CT AND HISTOMORPHOMETRIC CORRELATION. Radiology 1994; 192: 619-623.
  • 64. Hansson G.K.: Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005; 352: 1685-1695.
  • 65. Weber C., Zernecke A., Libby P.: The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 2008; 8: 802-815.
  • 66. Asahara T., Murohara T., Sullivan A. i wsp.: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-967.
  • 67. Simper D., Stalboerger P.G., Panetta C.J. i wsp.: Smooth muscle progenitor cells in human blood. Circulation 2002; 106: 1199-1204.
  • 68. Urbich C., Dimmeler S.: Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004; 95: 343-353.
  • 69. Zengin E., Chalajour F., Gehling U.M. i wsp.: Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 2006; 133: 1543-1551.
  • 70. Hristov M., Weber C.: Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J. Cell. Mol. Med. 2004; 8: 498-508.
  • 71. Hillebrands J.L., Klatter F.A., Rozing J.: Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 380-387.
  • 72. Sata M., Saiura A., Kunisato A. i wsp.: Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med. 2002; 8: 403-409.
  • 73. Sugiyama S., Kugiyama K., Nakamura S. i wsp.: Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis 2006; 187: 351-362.
  • 74. Zoll J., Fontaine V., Gourdy P. i wsp.: Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc. Res. 2008; 77: 471-480.
  • 75. Sugiyama S., Kugiyama K., Aikawa M. i wsp.: Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidasemediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol. 2004; 24: 1309-1314.
  • 76. Zernecke A., Bot I., Djalali-Talab Y. i wsp.: Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res. 2008; 102: 209-217.
  • 77. Haley K.J., Lilly C.M., Yang J.H. i wsp.: Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 2000; 102: 2185-2189.
  • 78. Bobryshev Y.V.: Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur. Heart J. 2005; 26: 1700-1704.
  • 79. Yilmaz A., Lochno M., Traeg F. i wsp.: Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004; 176: 101-110.
  • 80. Han J.W., Shimada K., Ma-Krupa W. i wsp.: Vessel wallembedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ. Res. 2008; 102: 546-553.
  • 81. Niessner A., Shin M.S., Pryshchep O. i wsp.: Synergistic proinflammatory effects of the antiviral cytokine interferonalpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation 2007; 116: 2043-2052.
  • 82. Niessner A., Sato K., Chaikof E.L. i wsp.: Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 2006; 114: 2482-2489.
  • 83. Jeziorska M., McCollum C., Woolley D.E.: Mast cell distribution, activation and phenotype in atherosclerotic lesions of human carotid arteries. J. Pathol. 1997; 182: 115-122.
  • 84. Kovanen P.T.: Mast cells: multipotent local effector cells in atherothrombosis. Immunol. Rev. 2007; 217: 105-122.
  • 85. Kovanen P.T., Kaartinen M., Paavonen T.: Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995; 92: 1084-1088.
  • 86. Lee-Rueckert M., Kovanen P.T.: Mast cell proteases: physiological tools to study functional significance of high density lipoproteins in the initiation of reverse cholesterol transport. Atherosclerosis 2006; 189: 8-18.
  • 87. Sun J., Sukhova G.K, Wolters P.J. i wsp.: Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 2007; 13: 719-724.
  • 88. Furukawa Y., Becker G., Stinn J.L. i wsp.: Interleukin-10 (IL-10) augments allograft arterial disease: paradoxical effects of IL-10 in vivo. Am. J. Pathol. 1999; 155: 1929-1939.
  • 89. Mallat Z., Besnard S., Duriez M. i wsp.: Protective role of interleukin- 10 in atherosclerosis. Circ. Res. 1999; 85: e17-e24.
  • 90. Schulte S., Sukhova G.K., Libby P.: Genetically programmed biases in Th1 and Th2 immune responses modulate atherogenesis. Am. J. Pathol. 2008; 172: 1500-1508.
  • 91. Vanderlaan P.A., Reardon C.A.: Thematic review series: the immune system and atherogenesis. The unusual suspects: an overview of the minor leukocyte populations in atherosclerosis. J. Lipid Res. 2005; 46: 829-838.
  • 92. Moos M.P., John N., Gräbner R. i wsp.: The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 2386-2391.
  • 93. Caligiuri G., Nicoletti A., Poirier B., Hansson G.K.: Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest. 2002; 109: 745-753.
  • 94. Swirski F.K., Pittet M.J., Kircher M.F. i wsp.: Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc. Natl Acad. Sci. USA 2006; 103: 10340-10345.
  • 95. Swirski F.K., Libby P., Aikawa E. i wsp.: Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007; 117: 195-205.
  • 96. Tacke F., Alvarez D., Kaplan T.J. i wsp.: Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007; 117: 185-194.
  • 97. Hansson G.K., Libby P.: The immune response in atherosclerosis a double-edged sword. Nat. Rev. Immunol. 2006; 6: 508-519.
  • 98. Nakajima T., Schulte S., Warrington K.J. i wsp.: T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 2002; 105: 570-575.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e29f8432-ce57-4102-8e2e-2ef2b8ba1b9d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.