Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 11 | 4 | 210-215

Article title

Chemokiny i ich receptory na neuronach a proces neurodegeneracji i neuroprotekcji

Content

Title variants

EN
Chemokines and their receptors on neurons in neurodegeneration and neuroprotection

Languages of publication

PL

Abstracts

PL
Pierwsze doniesienia potwierdzające ekspresję chemokin i ich receptorów w komórkach ośrodkowego układu nerwowego (OUN) pojawiły się kilkanaście lat temu. Od tego czasu opublikowano wiele prac poszerzających naszą wiedzę na ten temat. Ostatnie doniesienia zwracają szczególną uwagę na zaangażowanie chemokin i receptorów chemokinowych w procesach neurodegeneracji i neuroprotekcji. Istnieją przesłanki świadczące o tym, że chemokiny mogą w sposób bezpośredni prowadzić do neurodegeneracji poprzez aktywację swoich receptorów na powierzchni komórek nerwowych, jak i w sposób pośredni poprzez aktywację mikrogleju, który następnie uwalnia związki neurotoksyczne uszkadzające neurony. Istnieją też dowody na obecność receptorów chemokinowych i chemokin odpowiedzialnych za proces neuroprotekcji. Jak dotąd odnotowano obecność tylko dwóch chemokin wytwarzanych konstytutywnie w OUN, są nimi: CX3CL1 (fraktalkina) i CXCL12 (stromal-cell-derived factor 1, SDF-1). Na powierzchni neuronów stwierdzono z kolei ekspresję znacznej liczby receptorów chemokinowych, takich jak: CXCR2, CXCR4, CCR1, CCR3, CCR4, CCR5, CCR9/10, CX3CR1 i DARC. Na podstawie przedstawionych doniesień można wnioskować, że bezpośrednia interakcja między niektórymi receptorami chemokinowymi a chemokinami lub innymi ligandami dla tych receptorów może mieć duże znaczenie w procesach neurodegeneracji i/lub neuroprotekcji. Dokładne mechanizmy tych procesów są jednak wciąż niedostatecznie poznane. Świadczy o tym duża liczba sprzecznych informacji dostępnych w aktualnym piśmiennictwie, w związku z czym konieczne są dalsze badania tego interesującego zagadnienia.
EN
The first studies on expression of chemokines and their receptors in the central nervous system (CNS) appeared several years ago and since that time many papers were published increasing our knowledge in that field. Recent studies are concentrated mostly on involvement of chemokines and chemokine receptors in neurodegeneration and neuroprotection.There are evidences that chemokines may directly initiate neurodegeneration through activation of their receptors on the surface of neurons or indirectly through activation of microglia which in turn may secrete neurotoxic mediators damaging neuronal cells. There are also evidences suggesting that chemokines and chemokine receptors are also involved in neuroprotection. So far only two chemokines, CX3CL1 (fractalkine) and CXCL12 (SDF-1 – stromal cell-derived factor- 1) have been shown to be expressed constitutively in the CNS. However, expression of many chemokine receptors including CXCR2, CXCR4, CCR1, CCR3, CCR4, CCR5, CCR9/10, CX3CR1 i DARC has been detected on the surface of neuronal cell. Based on presented in this review studies it may be concluded that direct interaction between some chemokine receptors and chemokines or other chemokine receptor ligands may be important for development ofneurodegeneration and/or neuroprotection. The detailed mechanisms of those processes are still not well known. This is confirmed by the high number of inconsistent results in current scientific literature so the further studies are necessary in that field.

Discipline

Year

Volume

11

Issue

4

Pages

210-215

Physical description

Contributors

  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym, Uniwersytet Medyczny w Łodzi, WSS im. M. Kopernika,
  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym, Uniwersytet Medyczny w Łodzi, WSS im. M. Kopernika,

References

  • 1. Bajetto A., Bonavia R., Barbero S., Schettini G.: Characterization of chemokines and their receptors in the central nervous system: physiopathological implications. J. Neurochem. 2002; 82: 1311-1329.
  • 2. Dirnagl U., Iadecola C., Moskowitz M.A.: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999; 22: 391-397.
  • 3. Yeh T.H., Hwang H.M., Chen J.J. i wsp.: Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol. Dis. 2005; 18: 476-483.
  • 4. Brenneman D.E., Hauser J., Spong C.Y. i wsp.: VIP and D-alapeptide T-amide release chemokines which prevent HIV-1 GP120-induced neuronal death. Brain Res. 1999; 838: 27-36.
  • 5. Kaul M., Lipton S.A.: Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc. Natl Acad. Sci. USA 1999; 96: 8212-8216.
  • 6. Bruno V., Copani A., Besong G. i wsp.: Neuroprotective activity of chemokines against N-methyl-D-aspartate or beta-amyloid-induced toxicity in culture. Eur. J. Pharmacol. 2000; 399: 117-121.
  • 7. Watson K., Fan G.H.: Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol. Pharmacol. 2005; 67: 757-765.
  • 8. Harrison J.K., Jiang Y., Chen S. i wsp.: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 1998; 95: 10896-10901.
  • 9. Streit W.J., Conde J.R., Harrison J.K.: Chemokines and Alzheimer’s disease. Neurobiol. Aging 2001; 22: 909-913.
  • 10. Cartier L., Dubois-Dauphin M., Hartley O. i wsp.: Chemokineinduced cell death in CCR5-expressing neuroblastoma cells. J. Neuroimmunol. 2003; 145: 27-39.
  • 11. Cartier L., Hartley O., Dubois-Dauphin M., Krause K.H.: Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Brain Res. Rev. 2005; 48: 16-42.
  • 12. Coughlan C.M., McManus C.M., Sharron M. i wsp.: Expression of multiple functional chemokine receptors and monocyte chemoattractant protein-1 in human neurons. Neuroscience 2000; 97: 591-600.
  • 13. Lee H.P., Jun Y.C., Choi J.K. i wsp.: The expression of rantes and chemokine receptors in the brains of scrapie-infected mice. J. Neuroimmunol. 2005; 158: 26-33.
  • 14. Horuk R.: Chemokine receptors. Cytokine Growth Factor Rev. 2001; 12: 313-335.
  • 15. Cowell R.M., Silverstein F.S.: Developmental changes in the expression of chemokine receptor ccr1 in the rat cerebellum. J. Comp. Neurol. 2003; 457: 7-23.
  • 16. Cowell R.M., Xu H., Galasso J.M., Silverstein F.S.: Hypoxic-ischemic injury induces macrophage inflammatory protein-1alpha expression in immature rat brain. Stroke 2002; 33: 795-801.
  • 17. van der Meer P., Ulrich A.M., Gonzalez-Scarano F., Lavi E.: Immunohistochemical analysis of ccr2, ccr3, ccr5, and cxcr4 in the human brain: potential mechanisms for hiv dementia. Exp. Mol. Pathol. 2000; 69: 192-201.
  • 18. Petito C.K., Roberts B., Cantando J.D. i wsp.: Hippocampal injury and alterations in neuronal chemokine co-receptor expression in patients with aids. J. Neuropathol. Exp. Neurol. 2001; 60: 377-385.
  • 19. Sanders V.J., Pittman C.A., White M.G. i wsp.: Chemokines and receptors in HIV encephalitis. AIDS 1998; 12: 1021-1026.
  • 20. Xia M.Q., Qin S.X., Wu L.J. i wsp.: Immunohistochemical study of the beta-chemokine receptors ccr3 and ccr5 and their ligands in normal and alzheimer’s disease brains. Am. J. Pathol. 1998; 153: 31-37.
  • 21. Goldberg S.H., van der Meer P., Hesselgesser J. i wsp.: Cxcr3 expression in human central nervous system diseases. Neuropathol. Appl. Neurobiol. 2001; 27: 127-138.
  • 22. Meucci O., Fatatis A., Simen A.A. i wsp.: Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc. Natl Acad. Sci. USA 1998; 95: 14500-14505.
  • 23. Klein R.S., Williams K.C., Alvarez-Hernandez X. i wsp.: Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of aids. J. Immunol. 1999; 163: 1636-1646.
  • 24. Westmoreland S.V., Alvarez X., deBakker C. i wsp.: Developmental expression patterns of ccr5 and cxcr4 in the rhesus macaque brain. J. Neuroimmunol. 2002; 122: 146-158.
  • 25. Westmoreland S.V., Rottman J.B., Williams K.C. i wsp.: Chemokine receptor expression on resident and inflammatory cells in the brain of macaques with simian immunodeficiency virus encephalitis. Am. J. Pathol. 1998; 152: 659-665.
  • 26. Rottman J.B., Ganley K.P., Williams K. i wsp.: Cellular localization of the chemokine receptor ccr5. Correlation to cellular targets of hiv-1 infection. Am. J. Pathol. 1997; 151: 1341-1351.
  • 27. Torres-Muñoz J.E., Van Waveren C., Keegan M.G. i wsp.: Gene expression profiles in microdissected neurons from human hippocampal subregions. Brain Res. Mol. Brain Res. 2004; 127: 105-114.
  • 28. Boutet A., Salim H., Leclerc P., Tardieu M.: Cellular expression of functional chemokine receptor CCR5 and CXCR4 in human embryonic neurons. Neurosci. Lett. 2001; 311: 105-108.
  • 29. Puma C., Danik M., Quirion R. i wsp.: The chemokine interleukin- 8 acutely reduces ca(2+) currents in identified cholinergic septal neurons expressing CXCR1 and CXCR2 receptor mRNAs. J. Neurochem. 2001; 78: 960-971.
  • 30. Horuk R., Martin A.W., Wang Z. i wsp.: Expression of chemokine receptors by subsets of neurons in the central nervous system. J. Immunol. 1997; 158: 2882-2890.
  • 31. Xia M.Q., Bacskai B.J., Knowles R.B. i wsp.: Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol. 2000; 108: 227-235.
  • 32. Sheehan J.J., Zhou C., Gravanis I. i wsp.: Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J. Neurosci. 2007; 27: 1738-1745.
  • 33. Huang D.R., Wang J., Kivisakk P. i wsp.: Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med. 2001; 193: 713-726.
  • 34. Elhofy A., Wang J., Tani M. i wsp.: Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 2005; 77: 229-237.
  • 35. Eugenin E.A., D’Aversa T.G., Lopez L. i wsp.: MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J. Neurochem. 2003; 85: 1299-1311.
  • 36. Kalehua A.N., Nagel J.E., Whelchel L.M. i wsp.: Monocyte chemoattractant protein-1 and macrophage inflammatory protein- 2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp. Cell Res. 2004; 297: 197-211.
  • 37. Brenneman D.E., Hauser J., Spong C.Y., Phillips T.M.: Chemokines released from astroglia by vasoactive intestinal peptide. Mechanism of neuroprotection from HIV envelope protein toxicity. Ann. N. Y. Acad. Sci. 2000; 921: 109-114.
  • 38. Gamo K., Kiryu-Seo S., Konishi H. i wsp.: G-protein-coupled receptor screen reveals a role for chemokine receptor CCR5 in suppressing microglial neurotoxicity. J. Neurosci. 2008; 28: 11980-11988.
  • 39. Galasso J.M., Harrison J.K., Silverstein F.S.: Excitotoxic brain injury stimulates expression of the chemokine receptor CCR5 in neonatal rats. Am. J. Pathol. 1998; 153: 1631-1640.
  • 40. Xia M., Hyman B.T.: GROalpha/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways and for tau hyperphosphorylation- a role in Alzheimer’s disease? J. Neuroimmunol. 2002; 122: 55-64.
  • 41. Limatola C., Ciotti M.T., Mercanti D. i wsp.: The chemokine growth-related gene product beta protects rat cerebellar granule cells from apoptotic cell death through alpha-amino-3-hydroxy- 5-methyl-4-isoxazolepropionate receptors. Proc. Natl Acad. Sci. USA 2000; 97: 6197-6201.
  • 42. De Paola M., Buanne P., Biordi L. i wsp.: Chemokine MIP-2/ CXCL2, acting on CXCR2, induces motor neuron death in primary cultures. Neuroimmunomodulation 2007; 14: 310-316.
  • 43. Vallès A., Grijpink-Ongering L., de Bree F.M. i wsp.: Differential regulation of the CXCR2 chemokine network in rat brain trauma: implications for neuroimmune interactions and neuronal survival. Neurobiol. Dis. 2006; 22: 312-322.
  • 44. Nagasawa T., Hirota S., Tachibana K. i wsp.: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635-638.
  • 45. Zou Y.R., Kottmann A.H., Kuroda M. i wsp.: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595-599.
  • 46. Aggoun-Zouaoui D., Charriaut-Marlangue C., Rivera S. i wsp.: The HIV-1 envelope protein gp120 induces neuronal apoptosis in hippocampal slices. Neuroreport 1996; 7: 433-436.
  • 47. Ma Q., Jones D., Borghesani P.R. i wsp.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA 1998; 95: 9448-9453.
  • 48. Bezzi P., Domercq M., Brambilla L. i wsp.: CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 2001; 4: 702-710.
  • 49. Catani M.V., Corasaniti M.T., Navarra M. i wsp.: Gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J. Neurochem. 2000; 74: 2373-2379.
  • 50. Khan M.Z., Brandimarti R., Shimizu S. i wsp.: The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein. Cell Death Differ. 2008; 15: 1663-1672.
  • 51. Vazin T., Becker K.G., Chen J. i wsp.: A novel combination of factors, termed SPIE, which promotes dopaminergic neuron differentiation from human embryonic stem cells. PLoS One 2009; 4: e6606.
  • 52. Meucci O., Fatatis A., Simen A.A., Miller R.J.: Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl Acad. Sci. USA 2000; 97: 8075-8080.
  • 53. Wang X., Ellison J.A., Siren A.L. i wsp.: Prolonged expression of interferon-inducible protein-10 in ischemic cortex after permanent occlusion of the middle cerebral artery in rat. J. Neurochem. 1998; 71: 1194-1204.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-fb75383d-6221-4e91-a15c-87ee709e17db
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.