Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 595-608

Article title

Pochwała bursy Fabrycjusza, czyli co współczesna immunologia zawdzięcza ptakom?

Content

Title variants

EN
Tribute to bursa of Fabicius - what is the modern immunology' debt to the birds?

Languages of publication

PL EN

Abstracts

PL
Wiele odkryć, fundamentalnych dla rozwoju biologii XX w., dokonało się dzięki badaniom prowadzonym na ptakach. Wśród nich należy wymienić opracowanie przez Ludwika Pasteura podstaw i praktycznego stosowania szczepionek oraz wskazanie przez Bruce'a Glicka roli bursy Fabrycjusza, istotnej dla zrozumienia podstawowych mechanizmów odpornościowych. Zwłaszcza poznanie funkcjonalnej dychotomii układu odpornościowego ptaków, u których bursa Fabrycjusza stanowi centralne miejsce dojrzewania limfocytów odpowiedzialnych za produkcję przeciwciał, skłoniło uczonych do poszukiwania u ssaków odpowiednika bursy Fabrycjusza. Dzięki tym odkryciom nowoczesna immunologia mogła zacząć swój dynamiczny rozwój, posługując się najnowszymi metodami biologii molekularnej. A bursa Fabrycjusza nadal przyciąga zainteresowanie wielu badaczy, wykrywających liczne peptydy pochodzenia bursalnego wywierające efekty regulacyjne nie tylko w układzie odpornościowym ptaków, lecz także o szerszym działaniu biologicznym, w odniesieniu do procesów odpornościowych ssaków, nowotworzenia czy działania antyoksydacyjnego. Cechy anatomiczne układu odpornościowego kury domowej, takie jak brak węzłów chłonnych, eozynofili czy limfocytów rezydujących mogą wskazywać na prostotę jego budowy. Dodatkowo zsekwencjonowanie genomu kury domowej pokazało, że u ptaków wiele procesów odpornościowych może się odbywać przy bardziej oszczędnym repertuarze cytokin, chemokin, receptorów i cząsteczek kostymulujących niż ten, który występuje u ssaków. Jednak to uproszczenie jest tylko pozorne, ponieważ układ odpornościowy ptaków spełnia właściwie wszystkie funkcje jakie spełnia układ odpornościowy ssaków.
EN
Attribution by Bruce Glick in the fifties/sixties of twenty century an essential role of the bursa of Fabricius in the differentiation of a particular lymphocyte population in the chicken was a milestone in the modern immunology development. Incoming studies on both avian and mammalian experimental models were able to prove a functional dissociation of the humoral and cell-mediated immune response and to demonstrate that the bursa of Fabricius plays an important role in antibody production. Subsequently, the research was oriented towards the identification of the mammalian "bursa-equivalent" where the antibody-producing lymphocytes, named B-cells in the honor to the bursa of Fabricius, should be generated. Finally, this role in mammals has been proven for the embryonic liver and for the bone marrow lymphopoiesis in the postnatal life. Apart from that, bursa of Fabricius is an endocrine organ producing several peptides exhibiting immunoregulatory activity, not only towards the avian immune functions but also influencing mammalian immunity, both in vivo and in vitro. The most important among them seem to be: bursin (tripeptide discovered as the first bursal peptide), BASP (bursal anti-steroidogenic peptide, exerting and inhibitory effect on the steroid hormone synthesis in the ovarian follicles and adrenal cortex) and bursopentin (BP5, a peptide with an antioxidative properties). The anatomical features of the domestic chicken immune system, such as lack of lymph nodes, eosinophils or resident lymphocytes, may indicate the simplicity of its organization. In addition, the sequencing of the domestic chicken genome has shown that many immune processes in birds may occur with a more scant repertoire of cytokines, chemokines, receptors and costimulatory molecules than those found in mammals. However, this simplification is only apparent because the avian immune system fulfills all the functions as those of the mammalian one.

Journal

Year

Volume

66

Issue

4

Pages

595-608

Physical description

Dates

published
2017

Contributors

  • Zakład Fizjologii Zwierząt, Instytut Zoologii, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland
  • Zakład Fizjologii Zwierząt, Instytut Zoologii, Wydział Biologii, Uniwersytet Warszawski, Miecznikowa 1, 02-096 Warszawa, Polska
  • Department of Animal Physiology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warszawa, Poland

References

  • Audhya T., Kroon D., Heaven G., Viamontes G., Goldstein G., 1986. Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the Bursa of Fabricius. Science 231, 997-999.
  • Baba T., Kita M., 1977. Effect of extracts of the bursa of Fabricius on IgG antibody production in hormonally bursectomized chickens. Immunology 32, 271-274.
  • Byrd J. A., Dean C. E., Hayes T. K., Wright M. S., Hargis B. M., 1993. Detection and partial characterization of anti-steroidogenic peptide from the humoral immune system of the chicken. Life Sci. 52, 1195-1207.
  • Byrd J. A., Dean C. E., Hargis B. M., 1994. The effect of the humoral immune system-derived bursal anti-steroidogenic peptide (BASP) on corticosteroid biosynthesis in avian, porcine and canine adrenal-cortical cells. Comp. Biochem. Physiol. 108, 221-227.
  • Byrd J. A., Dean C. E., Fossum T. W., Hargis B. M., 1995. Effect of bursal anti-steroidogenic peptide (BASP) on cortisol biosynthesis in ACTH-stimulated canine adrenocortical cells in vitro. Vet. Immunol. Immunopathol. 47, 35-42.
  • Caldwell D. J., Caldwell D. Y., McElroy A. P., Manning J. G., Hargis B. M., 1998. BASP-induced suppression of mitogenesis in chicken, rat and human PBL. Develop. Comp. Immunol. 22, 613-629.
  • Caldwell D. J., Dean C. E., McElroy A. P., Caldwell D. Y., Hargis B. M., 1999. Bursal anti-steroidogenic peptide (BASP): modulation of mitogen-stimulated bursal-lymphocyte DNA synthesis. Comp. Biochem. Physiol. A, 123, 385-391.
  • Chang T. S., Glick B., Winter A. R., 1955. The significance of the bursa of Fabricius of chickens in antibody production. Poult. Sci. 34, 1187.
  • Cooper M. D., Peterson R. D. A., Good R., 1965. Delineation of the thymic and bursal lymphoid system in the chicken. Nature 205, 143-146.
  • Cooper M. D., Peterson R. D. A., South M. A., Good R. A., 1966. The functions of the thymus system and bursa system in the chicken. J. Exp. Med. 123, 75-102.
  • Davison T. F., 2003. The immunologists' debt to the chicken. Brit. Poult. Sci. 44, 6-21.
  • Ekino S., Sonoda K., 2014. New insight into the origin of IgG-bearing cells in the bursa of Fabricius. Int. Rev. Cell. Mol. Biol. 312, 101-137.
  • Feng X., Su X., Wang F., Wei J., Wang F., Cao R., Chou B., Mao X., Zheng Q., Chen P., 2010. Isolation and potential immunological characterization of TPSGLVY, a novel bursal septpeptide isolated from the bursa of Fabricius. Peptides 31, 1562-1568.
  • Feng X. L., Liu Q. T., Cao R. B., Zhou B., Wang F. Q., Deng W., Qiu Y. F., Zhang Y., Ishag H., Ma Z. Y., Zheng Q. S., Chen P. Y., 2012. A bursal pentapeptide (BPP-I), a novel bursa-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity. Amino Acids 42, 2215-2222.
  • Feng X., Cao R., Zhou B., Liu Q., Liu K., Liu X., Zhang Y., Gu J., Miao D., Chen P., 2013. The potential mechanism of bursal-derived BPP-II on the antibody production and avian pre-B cell. Vaccine 31, 1535-1539.
  • Garcia-Espinosa G., Moore R. W., Berghman L. R., Hargis B. M., 2002. Relationship of bursal anti-steroidogenic peptide (BASP) and histone H1. Life Sci. 71, 3071-3079.
  • Glick B., 1955. Growth and function of the bursa of Fabricius. Poult. Sci. 34, 1196.
  • Glick B., 1956. Normal growth of the bursa of Fabricius in chickens. Poult. Sci. 35, 843-851.
  • Glick B., 1957. Experimental modification of the growth of the bursa of Fabricius. Poult. Sci. 36, 18-23.
  • Glick B., 1994. The bursa of Fabricius - the evolution of a discovery. Poult. Sci. 73, 979-983.
  • Glick B., Chang T. S., Jaap R. G., 1956. The bursa of Fabricius and antibody production. Poult. Sci. 35, 224-225.
  • He M., Liang X., Wang K., Pu H., Hu Y., Ye G., Li X., Liu L., 2015. Age-related development and histological observation of bursa of Fabricius in yellow quails. Can. J. Anim. Sci. 95, 487-491.
  • Icgsc, 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695-716.
  • Kaiser P., 2012. The long view: a bright past, a brighter future? Fourty years of chicken immunology pre and post-genome. Avian Pathol. 41, 511-518.
  • Lassila O., Lambris J. D., Gisler R. H., 1989. A role for Lys-His-Gly-NH2 in avian and murine B cell development. Cell Immunol. 122, 319-328.
  • Li D.Y., Geng Z. R., Zhu H. F., Wang C., Miao D. N., Chen P. Y., 2011. Immunomodulatory acitvities of a new pentapeptide (Bursopentin) from the chicken bursa of Fabricius. Amino Acids 40, 505-515.
  • Li D. Y., Xue M. Y., Geng Z. R., Chen P. Y., 2012. The suppressive effects of bursopentine (BP5) on oxidative stress and NF-κB activation in lipopolysaccharide-activated murine peritoneal macrophages. Cell Physiol. Biochem. 29, 9-20.
  • Liu X.-D., Feng X.-L., Zhou B., Cao R.-B., Li X.-F., Ma Z.-Y., Chen P.-Y., 2012. Isolation, modulatory functions on murine B cell development and antigen-specific immune responses of BP11, a novel peptide from the chicken bursa of Fabricius. Peptides 35, 107-113.
  • Liu X.-D., Zhou B., Cao R.-B., Feng X.-L., Li X.-F., Chen P.-Y., 2013. Comparison of immunomodulatory functions of three peptides from the chicken bursa of Fabricius. Regul. Peptides 186, 75-61.
  • Liu X.-D., Zhou B., Cao R.-B., Feng X.-L., Ma Z.-Y., Chen P.-Y., 2014a. BP5 regulated B cell development promoting anti-oxidant defence. Amino Acids 46, 209-222.
  • Liu X.-D., Zhou B., Feng X.-L., Cao R.-B., Chen P.-Y., 2014b. BP8, a novel peptide from avian immune system, modulates B cell development. Amino Acids 46, 2705-2713.
  • Liu X.-D., Zhang F.-B., Shan H., Chen P.-Y., 2015. The potential mechanism of bursal-derived BP8 on B cell developments. Biotechnol. Lett. 37, 1013-1020.
  • Magor K. E., Miranzo Navarro D., Barber M. R. W., Petkau K., Fleming-Canepa X., Blyth G. A. D., Blaine A. H., 2013. Defense genes missing from the flight division. Dev. Comp. Immunol. 41, 377-388.
  • Oecd/Fao, 2016. Oecd-Fao Agricultural Outlook 2016-2025. OECD Publishing, Paris; http://dx.doi.org/10.1787/agr_outlook-2016-en
  • Olàh I., Glick B., 1978. The number and size of the follicular epithelium (FE) and follicles in the bursa of Fabricius. Poult. Sci. 57, 1445-1450.
  • Olàh I., Glick B., 1995. Dendritic cells in the bursal follicles and germinal centers of the chickens cecal tonsil express vimentin but not desmin. Anatom. Rec. 243, 384-389.
  • Olàh I., Nagy N., 2013. Retrospection to discovery of bursal function and recognition of avian dendritic cells: past and present. Develop. Comp. Immunol. 41, 310-315.
  • Owen J. J. T., Cooper M. D., Raff M. C., 1974. In vitro generation of B lymphocytes in mouse foetal liver - a mammalian 'bursa equivalent'. Nature 249, 361-363.
  • Qin T., Yin Y., Yu Q., Yang Q., 2015. Bursopentin (BP5) protects dendritic cells from lipoplysaccharide-induced oxidative stress for immunosuppression. PLoS One; doi: 1-.10.1371/journal.pone 0117477.
  • Ratcliffe M. J. H., 2006. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev. Comp. Immunol. 30, 101-118.
  • Ribatti D., 2014. Max D. Cooper and the delineation of two lymphoid lineages in the adaptive immune system. Immunol. Lett. 162, 233-236.
  • Ribatti D., Crivellato E., Vacca A., 2006. The contribution of Bruce Glick to the definition of the role played by the bursa of Fabricius in the development of the B cell lineage. Clin. Exp. Immunol.; doi:10.1111/j.1365.2249.2006.03131.x
  • Schmid M., Smith J., Burt D. W., Aken B. L., Antin P. B., Archibald A. L., Ashwell C., Blackshear P. J., Boschiero C., Brown C.T. i współaut., 2015. Third report on chicken genes and chromosomes 2015. Cytogenet. Genome. Res. 145, 78-179.
  • Steinman R. M., Cohn Z. A., 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142-1162.
  • Szenberg A., Warner N., 1962. Dissociation of immunological responsiveness in fowls with hormonally development of lymphoid tissues. Nature 194, 146-147.
  • Warren W. C., Hillier L. W., Tomlinson C., Minx P., Kremitzki M., Graves T., Markovic C., Bouk N., Pruitt K. D., Thibaud-Nissen F. i współaut., 2017. A new chicken genome assembly provides insight into avian genome structure. G3 Genes Genomes Genetics 7, 107-119.
  • Yin Y., Qin T., Yu Q., Yang Q., 2014. Bursopentin (BP5) from chicken bursa of Fabricius attenuates the immune function of dendritic cells. Amino Acids 46, 1763-1774.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p595kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.