Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2017 | 66 | 4 | 563-574

Article title

różnorodność peptydów przeciwdrobnoustrojowych bezkręgowców

Content

Title variants

EN
Diversity of antimicrobial peptides in invertebrates

Languages of publication

PL EN

Abstracts

PL
Peptydy przeciwdrobnoustrojowe są kluczowymi efektorami odporności wrodzonej. Wykazują działanie przeciwbakteryjne, przeciwgrzybowe, przeciwpierwotniacze, a często przeciwwirusowe i przeciwnowotworowe. Wiele z nich zaangażowanych jest w neutralizację endotoksyn patogenów oraz ma właściwości immunomodulacyjne, stąd określane są również jako peptydy odpornościowe. O bogactwie i różnorodności naturalnie występujących peptydów przeciwdrobnoustrojowych świadczy ich liczba zgromadzona w bazie Antimicrobial Peptide Database (aps.unmc.edu/AP/main.php), która zawiera dane dotyczące ponad 2100 peptydów zidentyfikowanych u zwierząt. Spośród nich ponad 570 to peptydy odpornościowe bezkręgowców, w tym 495 opisanych u stawonogów. Niezwykle szerokie występowanie peptydów przeciwdrobnoustrojowych u przedstawicieli wszystkich królestw jednoznacznie wskazuje na ich fundamentalną rolę w sukcesie ewolucyjnym złożonych organizmów wielokomórkowych. Ich zasadnicze znaczenie w odporności bezkręgowców podkreśla ponadto fakt, że większość opisanych pod tym względem gatunków wytwarza zestaw peptydów zróżnicowanych pod względem struktury przestrzennej, właściwości biochemicznych, mechanizmu działania oraz spektrum aktywności przeciwdrobnoustrojowej.
EN
Antimicrobial peptides (AMPs) are the key effectors of innate immunity. They exhibit antimicrobial, antifungal, antiprotozoal, and often antiviral and anticancer activities. Many of them are involved in neutralization of pathogen endotoxins, have immunomodulatory properties, and are therefore referred to as defense peptides (host defense peptides). The wealth and diversity of naturally occurring AMPs is evidenced by their numbers in the Antimicrobial Peptide Database (aps.unmc.edu/AP/main.php), which contains data on over 2100 peptides identified in animals. Of these, over 570 are invertebrate peptides, including 495 described in arthropods. The unusually widespread presence of AMPs in all kingdoms clearly indicates their fundamental role in the evolutionary success of complex multicellular organisms. Their essential role in invertebrate immunity further emphasizes the fact that most species produce a set of defense peptides varied in terms of spatial structure, biochemical properties, mechanism of action and spectrum of antimicrobial activity.

Journal

Year

Volume

66

Issue

4

Pages

563-574

Physical description

Dates

published
2017

Contributors

  • Zakład Immunobiologii, Instytut Biologii i Biochemii, Wydział Biologii i Biotechnologii, Uniwersytet Marii Curie-Skłodowskiej, Akademicka 19, 20-033 Lublin, Polska
  • Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
  • Zakład Immunobiologii, Instytut Biologii i Biochemii, Wydział Biologii i Biotechnologii, Uniwersytet Marii Curie-Skłodowskiej, Akademicka 19, 20-033 Lublin, Polska
  • Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland

References

  • Augustin R., Bosch T. C., 2010. Cnidarian immunity: a tale of two barriers. Adv. Exp. Med. Biol. 708, 1-16.
  • Bachère E., Gueguen Y., Gonzalez M., de Lorgeril J., Garnier J., Romestand B., 2004. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol. Rev. 198, 149-68.
  • Bílikova K., Huang S.-C., Linb I.-P., Simuth J., Peng C.-C., 2015. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 68, 190-196.
  • Bosch T. C., 2014. Rethinking the role of immunity: lessons from Hydra. Trends Immunol. 35, 495-502.
  • Bulet P., Stocklin R., Menin L., 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169-184.
  • Charlet M., Chernysh S., Philippe H., Hetru C., Hoffmann J. A., Bulet P., 1996. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J. Biol. Chem. 271, 21808-21813.
  • Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L., 1993a. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239-19245.
  • Cociancich S., Goyffon M., Bontems F., Bulet P., Bouet F., Menez A., Hoffmann J., 1993b. Purification and characterization of a scorpion defensin, a 4 kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 104, 17-22.
  • Cuthbertson B. J., Deterding L. J., Williams J. G., Tomer K. B., Etienne K., Blackshear P. J., Büllesbach E. E., Gross P. S., 2008. Diversity in penaeidin antimicrobial peptide form and function. Dev. Comp. Immunol. 32, 167-181.
  • Cytryńska M., Mak P., Zdybicka-Barabas A., Suder P., Jakubowicz T., 2007. Purification and characterization of eight peptides from Galleria mellonella. Peptides 28, 583-543.
  • Cytryńska M., Zdybicka-Barabas A., 2015. Defense peptides: recent developments. BioMol Concepts 6, 237-251.
  • Da Silva P., Jouvensal L., Lamberty M., Bulet P., Caille A., Vovelle F., 2003. Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci. 12, 438-446.
  • Dai H., Rayaprolu S., Gong Y., Huang R., Prakash O., Jiang H., 2008. Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. Biochem. Biophys. Res. Commun. 14, 855-863.
  • Dimarcq J. L., Bulet P., Hetru C., Hoffmann J., 1998. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47, 465-477.
  • Falanga A., Lombardi L., Franci G., Vitiello M., Iovene M. R., Morelli G., Galdiero M., Galdiero S., 2016. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. Int. J. Mol. Sci. 17, 785-798.
  • Fehlbaum P., Bulet P., Michaut L., Lagueux M., Broekaert W. F. O., Hetru Ch. S, Hoffmann J. A., 1994. Septic injury of Drosophila induces the synthesis of a potent antitungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159-33163.
  • Fredrick W. S., Ravichandran S., 2012. Hemolymph proteins in marine crustaceans. Asian Pac. J. Trop. Biomed. 2, 496-502.
  • Gao B., Zhu S., 2014. An insect defensin-derived β-hairpin peptide with enhanced antibacterial activity. ACS Chem. Biol. 9, 405-413.
  • Kong C., Eng S. A., Lim M. P., Nathan S., 2016. Beyond traditional antimicrobials: A Caenorhabditis elegans model for discovery of novel anti-infectives. Front. Microbiol. 7, 1956.
  • Lamberty M., Ades S., Uttenweiler-Joseph S., Brookhart G., Bushey D., Hoffmann J. A., Bulet P., 1999. Insect immunity: Isolation the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326.
  • Lauth X., Nesin A., Briand J. P., Roussel J. P., Hetru C., 1998. Isolation, characterization and chemical synthesis of a new insect defensin from Chironomus plumosus (Diptera). Insect Biochem. Mol. Biol. 28, 1059-1066.
  • Lee Y. S., Yun E. K., Jang W. S., Kim I., Lee J. H., Park S. Y., Ryu K. S., Seo S. J., Kim C. H., Lee I. H., 2004. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 13, 65-72.
  • Li C., Blencke H. M., Haug T., Stensvåg K., 2015. Antimicrobial peptides in echinoderm host defense. Dev. Comp. Immunol. 49, 190-197.
  • Li W., Li S., Zhong J., Zhu Z., Liu J., Wang W., 2011. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen). Peptides 32, 1146-1150.
  • Miyoshi N., Saito T., Ohmura T., Kuroda K., Suita K., Ihara K., Isogai E., 2016. Functional structure and antimicrobial activity of persulcatusin, an antimicrobial peptide from the hard tick Ixodes persulcatus. Parasit. Vectors 9, 85-96.
  • Mylonakis E., Podsiadlowski L., Muhammed M., Vilcinskas A., 2016. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2015.0290.
  • Otero-González A. J., Magalhães B. S., Garcia-Villarino M., López-Abarrategui C., Sousa D. A., Dias S. C., Franco O. L., 2010. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 24, 1320-1334.
  • Otvos L. J. R., 2000. Antibacterial peptides isolated from insects. J. Peptide Sci. 6, 497-511.
  • Perrigault M., Tanguy A., Allam B., 2009. Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genomics 10, 377-394.
  • Pillai A., Ueno S., Zhang H., Lee J. M., Kato Y., 2005. Cecropin P1 and novel nematode cecropins: a bacteria-inducible antimicrobial peptide family in the nematode Ascaris suum. Biochem. J. 390, 207-214.
  • Rosa R. D., Santini A., Fievet J., Bulet P., Destoumieux-Garzo D., Bache E., 2011. Big Defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS One 6, e25594.
  • Schuhmann B., Seitz V., Vilcinskas A., Podsiadlowski L., 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125-133.
  • Scocchi M., Tossi A., Gennaro R., 2011. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell. Mol. Life Sci. 68, 2317-2330.
  • Seo J. K., Crawford J. M., Stone K. L., Noga E. J., 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun. 338, 1998-2004.
  • Simon A., Kullberg B. J., Tripet B., Boerman O. C., Zeeuwen P., van der Ven-Jongekrijg J., Verweij P., Schalkwijk J., Hodges R., van der Meer J. W., Netea M. G., 2008. Drosomycin-like defensin, a human homologue of Drosophila melanogaster drosomycin with antifungal activity. Antimicrob. Agents Chemother. 52, 1407-1412.
  • Smith V.J., Fernandes J. M., Kemp G. D., Hauton C., 2008. Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev. Comp. Immunol. 32, 758-772.
  • Tasiemski A., Vandenbulcke F., Mitta G., Lemoine J., Lefebvre C., Sautière P. E., Salzet M., 2004. Molecular characterization of two novel antibacterial peptides inducible upon bacterial challenge in an annelid, the leech Theromyzon tessulatum. J. Biol. Chem. 279, 30973-30982.
  • Tassanakajon A., Amparyup P., Somboonwiwat K., Supungul P., 2011. Cationic antimicrobial peptides in penaeid shrimp. Mar. Biotechnol. 13, 639-657.
  • Tassanakajon A., Somboonwiwat K., Amparyup P., 2015. Sequence diversity and evolution of antimicrobial peptides in invertebrates. Dev. Comp. Immunol. 48, 324-341.
  • Tincu J. A., Taylor S. W., 2004. Antimicrobial peptides from marine invertebrates. Antimicrob. Agents Chemother. 48, 3645-3654.
  • Tonk M., Cabezas-Cruz A., Valdés J. J., Rego R. O. M., Rudenko N., Golovchenko M., Bell-Sakyi L., de la Fuente J., Grubhoffer L., 2014. Identification and partial characterisation of new members of the Ixodes ricinus defensin family. Gene 540, 146-152.
  • Torres A. M., Kuchel P. W., 2004. The β-defensin-fold family of polypeptides. Toxicon 44, 581-588.
  • van Kan E., Demel R., Breukink E., van de Bent A., Kruijff B., 2002. Clavanin permeabilizes target membranes via two distinctly different pH-dependent mechanisms. Biochemistry 41, 7529-7539.
  • Viljakainen L., Pamilo P., 2008. Selection on an antimicrobial peptide defensin in ants. J. Mol. Evol. 67, 643-652.
  • Wang G., Li X., Wang Z., 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087-D1093.
  • Yi H., Chowdhury M., Huang Y., Yu X., 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807-5822.
  • Zhang Z-T., Zhu S-Y., 2009. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol. Biol. 18, 549-556.
  • Zhao J., Song L., Li C., Ni D., Wu L., Zhu L., Wang H., Xu W., 2007. Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol. Immunol. 44, 360-368.
  • Zhu S, Gao B., 2014. Nematode-derived drosomycin-type antifungal peptides provide evidence for plant-to-ecdysozoan horizontal transfer of a disease resistance gene. Nat. Commun. doi: 10.1038/ncomms4154.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv66p563kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.