Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 1060-1064

Article title

Structure and Transport Characteristics of Tunnel Junctions with Hybrid Semiconductor Barriers with Quantum Dots

Content

Title variants

Languages of publication

EN

Abstracts

EN
We propose to realize MoRe/SiO_x(W)/MoRe hybrid junctions by using self-organization effects for the creation of quantum dots (tungsten clusters) in the semiconductor barriers consisting of a mixture of silicon and silicon oxide. Current-voltage characteristics of the MoRe/SiO_x(W)/MoRe samples have been measured in a wide voltage range from -900 to 900 mV at temperatures from 4.2 to 77 K. At low temperatures and for a comparatively small W content in the hybrid barrier, the heterostructures exhibited current-voltage curves of an unusual shape. Single or several current peaks caused by electron tunneling through the allowed states in the barrier have been observed in the transport characteristics. With increasing temperature, superconducting fluctuations in the MoRe electrodes become unimportant, and the current-voltage curve of a heterostructure follows the Ohm law. At last, we present theoretical description of the charge transport in such inhomogeneous systems with account of many-electron processes.

Keywords

EN

Contributors

author
  • G.V. Kurdyumov Institute for Metal Physics, Kyiv 03142, Ukraine
author
  • V. Bakul Institute for Superhard Materials, Kyiv 07074, Ukraine
author
  • V. Bakul Institute for Superhard Materials, Kyiv 07074, Ukraine
author
  • G.V. Kurdyumov Institute for Metal Physics, Kyiv 03142, Ukraine
author
  • G.V. Kurdyumov Institute for Metal Physics, Kyiv 03142, Ukraine
author
  • V. Bakul Institute for Superhard Materials, Kyiv 07074, Ukraine
author
  • G.V. Kurdyumov Institute for Metal Physics, Kyiv 03142, Ukraine
author
  • G.V. Kurdyumov Institute for Metal Physics, Kyiv 03142, Ukraine
  • Vasyl' Stus Donetsk National University, Vinnytsia 21021, Ukraine

References

  • [1] T.A. Prikhna, W. Gawalek, Ya.M. Savchuk, V.M. Tkach, N.I. Danilenko, M. Wendt, J. Dellith, H. Weber, M. Eisterer, V.E. Moshchil, N.V. Sergienko, A.V. Kozyrev, P.A. Nagorny, A.P. Shapovalov, V.S. Melnikov, S.N. Dub, D. Litzkendorf, T. Habisreuther, Ch. Schmidt, A. Mamalis, V. Sokolovsky, V.B. Sverdun, F. Karau, A. Starostina, Physica C 470, 935 (2010), doi: 10.1016/j.physc.2010.02.064
  • [2] T.A. Prikhna, W. Gawalek, Ya.M. Savchuk, N.V. Sergienko, V.E. Moshchil, V. Sokolovsky, J. Vajda, V.N. Tkach, F. Karau, H. Weber, M. Eisterer, A. Joulain, J. Rabier, X. Chaud, M. Wendt, J. Dellith, N.I. Danilenko, T. Habisreuther, S.N. Dub, V. Meerovich, D. Litzkendorf, P.A. Nagorny, L.K. Kovalev, Ch. Schmidt, V.S. Melnikov, A.P. Shapovalov, A.V. Kozyrev, V.B. Sverdun, J. Kosa, A.V. Vlasenko, Acta Phys. Pol. A 117, 7 (2010), doi: 10.12693/APhysPolA.117.7
  • [3] V. Lacquaniti, C. Cassiago, N. De Leo, M. Fretto, A. Sosso, P. Febvre, V. Shaternik, A. Shapovalov, O. Suvorov, M. Belogolovskii, P. Seidel, IEEE Trans. Appl. Supercond. 26, 1100505-1 (2016), doi: 10.1109/TASC.2016.2535141
  • [4] V.E. Shaternik, A.P. Shapovalov, A.Y. Suvorov, N.A. Skoryk, M.A. Belogolovskii, Low Temp. Phys. 42, 426 (2016), doi: 10.1063/1.4951668
  • [5] V.E. Shaternik, A.P. Shapovalov, T.A. Prikhna, O.Yu. Suvorov, M.A. Skorik, V.I. Bondarchuk, V.E. Moshchil, IEEE Trans. Appl. Supercond. 27, 1800507 (2017), doi: 10.1109/TASC.2016.2636255
  • [6] V. Shaternik, A. Shapovalov, M. Belogolovskii, A. Suvorov, S. Döring, S. Schmidt, P. Seidel, Mater. Res. Exp. 1, 026001 (2014), doi: 10.1088/2053-1591/1/2/026001
  • [7] H. Fritzsche, Amorphous Silicon and Related Materials, World Sci., Chicago 1989
  • [8] E.E. Zubov, Phil. Mag. 98, 329 (2018), doi: 10.1080/14786435.2017.1407499
  • [9] G.D. Mahan, Many-Particle Physics, 3rd ed., Springer, New York 2000, doi: 10.1007/978-1-4757-5714-9
  • [10] R. Landauer, Philos. Mag. 21, 863 (1970), doi: 10.1080/14786437008238472
  • [11] W.L. McMillan, Phys. Rev. 175, 537 (1968), doi: 10.1103/PhysRev.175.537
  • [12] V.M. Pan, V.P. Gorishnyak, E.M. Rudenko, V.E. Shaternik, M.V. Belous, S.A. Koziychuk, F.I. Korzhinsky, Cryogenics 23, 258 (1983), doi: 10.1016/0011-2275(83)90146-7
  • [13] M.I. Tsindlekht, V.M. Genkin, G.I. Leviev, I. Felner, O. Yuli, I. Asulin, O. Millo, M.A. Belogolovskii, N.Yu. Shitsevalova, Phys. Rev. B 78, 024522 (2008), doi: 10.1103/PhysRevB.78.024522
  • [14] M.A. Belogolovskii, Cent. Eur. J. Phys. 7, 304 (2009), doi: 10.2478/s11534-009-0012-1
  • [15] V.M. Svistunov, M.A. Belogolovskii, A.I. Khachaturov, Usp. Fiz. Nauk 163, 61 (1993), doi: 10.3367/UFNr.0163.199302c.0061
  • [16] R. Comin, A. Damascelli, Annu. Rev. Condens. Matter Phys. 7, 369 (2016), doi: 10.1146/annurev-conmatphys-031115-011401

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p71kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.