Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 4 | 829-837

Article title

Polymer-Oxide Composites: Toward New Optical Materials

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Brief summary concerning properties of the polymer matrix incorporated with inorganic, e.g. oxide particles, micro/nanocomposites and opportunity to use these composites as optical materials for modern optics and optoelectronic devices is presented in the work. Structure and morphology of the several sets of the new polymer micro/nanocomposites based on the microcrystalline cellulose incorporated with micro/nanoparticle of various oxides (NaNO₂, La_{1-x}Sm_{x}VO₄, La_{1-x}Eu_{x}VO₄ and K₂Eu(PO₄)(MoO₄)), were prepared by "dry" and "wet" cool pressing procedure. Morphology of these composites was described as ensemble of cellulose plates and located gains of the oxide particles. Temperature dependences of complex dielectric permittivity and luminescence properties of the composites were studied. Temperature and electromagnetic field frequency dependences of the dielectric permittivity revealed influence of oxide particles on the characteristics of the microcrystalline cellulose. Both wide band (matrix emission) and narrow lines (RE ions emission) of visible luminescence (350-750 nm range) of the composites is excited in the range 250-550 nm. The luminescence characteristics displayed effect of cellulose on the electronic system of the Sm³⁺ and Eu³⁺ ions and effect of oxide particles on the cellulose matrix was shown, too. Spectral characteristics and high intensity of luminescence showed perspectives of studied composites to be used as light converters in LED and elsewhere as optics luminescent materials.

Keywords

EN

Contributors

author
  • Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine

References

  • [1] P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2009), doi: 10.1590/S1516-14392009000100002
  • [2] J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Mater. Sci. Eng. A 393, 1 (2005), doi: 10.1016/j.msea.2004.09.044
  • [3] R.A. Vaia, H.D. Wagner, Mater. Today 7, 32 (2004), doi: 10.1016/S1369-7021(04)00506-1
  • [4] H.S. Nalwa, Handbook of Nanostructured Materials and Technology, Academic Press, New York 2000
  • [5] P.M. Ajayan, L. Schadler, P.V. Braun, Nanocomposites Science and Technology, Wiley-VCH, Weinheim 2003
  • [6] R. Roy, R.A. Roy, D.M. Roy, Mater. Lett. 4, 323 (1986), doi: 10.1016/0167-577X(86)90063-7
  • [7] O. Kamigaito, J. Japan Soc. Powder Metall. 38, 321 (1991)
  • [8] H. Fischer, Mater. Sci. Eng. C 23, 763 (2003), doi: 10.1016/j.msec.2003.09.148
  • [9] S.A. Zavyalov, A.N. Pivkina, J. Schoonman, Solid State Ion. 147, 415 (2002), doi: 10.1016/S0167-2738(02)00038-3
  • [10] C.M. Thompson, H.M. Herring, T.S. Gates, J.W. Connel, Composit. Sci. Technol. 63, 1591 (2003), doi: 10.1016/S0266-3538(03)00062-9
  • [11] M. Alexandre, P. Dubois, Mater. Sci. Eng. 28, 1 (2000), doi: 10.1016/S0927-796X(00)00012-7
  • [12] M. Ogawa, K. Kuroda, Bull. Chem. Soc. Japan 70, 2593 (1997), doi: 10.1246/bcsj.70.2593
  • [13] H.G. Jeon, H.T. Jung, S.W. Lee, S.D. Hudson, Polym. Bull. 41, 107 (1998), doi: 10.1007/s002890050339
  • [14] V.M.F. Evora, A. Shukla, Mater. Sci. Eng. A 361, 358 (2003), doi: 10.1016/S0921-5093(03)00536-7
  • [15] M.L. Di Lorenzo, M.E. Errico, M. Avella, J. Mater. Sci. 37, 2351 (2002), doi: 10.1023/A:1015358425449
  • [16] S.S. Park, N. Bernet, S. de La Roche, H.T. Hanh, J. Compos. Mater. 37, 465 (2003), doi: 10.1177/0021998303037005036
  • [17] A. Dutta, D. Das, M.L. Grilli, E. Di Bartolomeo, E. Traversa, D. Chakravorty, J. Sol-Gel Sci. Technol. 26, 1085 (2003), doi: 10.1023/A:1020706707243
  • [18] N. Herron, D.L. Thorn, Adv. Mater. 10, 1173 (1998)., doi: 10.1002/(SICI)1521-4095(199810)10:15
  • [19] D. Schmidt, D. Shah, E.P. Giannelis, Curr. Opin. Solid State Mater. Sci. 6, 205 (2002), doi: 10.1016/S1359-0286(02)00049-9
  • [20] S.S. Ray, M. Okamoto, Progr. Polym. Sci. 28, 1539 (2003), doi: 10.1016/j.progpolymsci.2003.08.002
  • [21] S.H. Liu, X.F. Qian, J.Y. Yuan, J. Yin, R. He, Z.K. Zhu, Mater. Res. Bull. 38, 1359 (2003), doi: 10.1016/S0025-5408(03)00148-X
  • [22] T. Trindade, M.C. Neves, A.M.V. Barros, Scr. Mater. 43, 567 (2000), doi: 10.1016/s1359-6462(00)00437-1
  • [23] R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Chem. Mater. 8, 1728 (1996), doi: 10.1021/cm960127g
  • [24] L.L. Beecroft, C.K. Ober, Chem. Mater. 9, 1302 (1997)., doi: 10.1021/cm960441a
  • [25] V. Tucureanu, A. Matei, A.M. Avram, Opto-Electron. Rev. 23, 239 (2015), doi: 10.1515/oere-2015-0038
  • [26] E. Klampaftis, D. Rossa, K.R. McIntosh, B.S. Richards, Solar En. Mater. Solar Cells 93, 1182 (2009), doi: 10.1016/j.solmat.2009.02.020
  • [27] P. Ramasamy, P. Manivasakan, J. Kim, RSC Adv. 4, 34873 (2014), doi: 10.1039/C4RA03919J
  • [28] M. Dudek, A. Jusza, K. Anders, L. Lipińska, J. Rare Earths 29, 1123 (2011), doi: 10.1016/S1002-0721(10)60610-2
  • [29] K. Anders, A. Jusza, M. Baran, L. Lipińska, R. Piramidowicz, Opt. Mater. 34, 1964 (2012), doi: 10.1016/j.optmat.2011.11.011
  • [30] V. Vistovsky, N. Mitina, A. Shapoval, T. Malyy, A. Gektin, T. Konstantinova, A. Voloshinovskii, A. Zaichenko, Opt. Mater. 34, 2066 (2012), doi: 10.1016/j.optmat.2012.04.010
  • [31] A. Kumar, Yu.S. Negi, V. Choudhary, N.K. Bhardwaj, J. Mater. Phys. Chem. 2, 1 (2014), doi: 10.12691/jmpc-2-1-1
  • [32] R.J. Moon, A. Martini, A. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40, 3941 (2011), doi: 10.1039/C0CS00108B
  • [33] I. Siro, D. Plackett, Cellulose 17, 459 (2010), doi: 10.1007/s10570-010-9405-y
  • [34] S. Ummartyotin, C. Pechyen, Carbohydr. Polym. 142, 133 (2016), doi: 10.1016/j.carbpol.2016.01.020
  • [35] Z. Zhou, Q. Wang, Sens. Actuat. B 173, 833 (2012), doi: 10.1016/j.snb.2012.07.117
  • [36] S. Nedilko, S. Revo, M. Nedielko, T. Avramenko, K. Ivanenko, V. Scherbatskii, Solid State Phenom. 230, 147 (2015), doi: 10.4028/www.scientific.net/SSP.230.147
  • [37] S.G. Nedilko, S.L. Revo, V.P. Chornii, V.P. Scherbatskyi, M.S. Nedielko, J. Sens. Sens. Syst. 4, 31 (2015), doi: 10.5194/jsss-4-31-2015
  • [38] M. Karakawa, M. Chikamatsu, C. Nakamoto, Y. Maeda, S. Kubota, K. Yase, Macromol. Chem. Phys. 208, 2000 (2007), doi: 10.1002/macp.200700154
  • [39] S. Yun, S.D. Jang, G.Y. Yun, J.H. Kim, J. Kim, Appl. Phys. Lett. 95, 104102 (2009), doi: 10.1063/1.3224200
  • [40] N. Wang, E. Ding, R. Cheng, Langmuir 24, 5 (2008), doi: 10.1021/la702923w
  • [41] R.P. Bateh, J.D. Winefordner, Talanta 29, 713 (1982), doi: 10.1016/0039-9140(82)80083-0
  • [42] V. Pikulev, S. Loginova, V. Gurtov, Nanoscale Res. Lett. 7, 426 (2012), doi: 10.1186/1556-276X-7-426
  • [43] H. Tylli, I. Forsskahl, C. Olkkonen, Cellulose 7, 133 (2000), doi: 10.1023/A:1009225624732
  • [44] M. Nedielko, S. Hamamda, O. Alekseev, V. Chornii, M. Dashevskii, M. Lazarenko, K. Kovalov, S.G. Nedilko, S. Tkachov, S. Revo, V. Scherbatskyi, Nanoscale Res. Lett. 12, 98 (2017), doi: 10.1186/s11671-017-1862-x
  • [45] P. Kulpinski, A. Erdman, T. Grzyb, S. Lis, Polym. Composit. 37, 153 (2016)., doi: 10.1002/pc.23166
  • [46] E. Smiechowicz, P. Kulpinski, B. Niekraszewicz, A. Bacciarelli, Cellulose 18, 975 (2011), doi: 10.1007/s10570-011-9544-9
  • [47] P. Kulpinski, A. Erdman, M. Namyślak, J.D. Fidelus, Cellulose 19, 1259 (2012), doi: 10.1007/s10570-012-9704-6
  • [48] V. Chornii, O. Chukova, S.G. Nedilko, S.A. Nedilko, T. Voitenko, Phys. Status Solidi C 13, 40 (2016), doi: 10.1002/pssc.201510116
  • [49] Yu. Hizhnyi, V. Chornii, S. Nedilko, M. Slobodyanik, K. Terebilenko, V. Boyko, O. Gomenyuk, V. Sheludko, Radiat. Measur. 90, 314 (2016), doi: 10.1016/j.radmeas.2016.01.014
  • [50] C. Driemeier, G.A. Calligaris, J. Appl. Crystallogr. 44, 184 (2011), doi: 10.1107/S0021889810043955
  • [51] K. Leppeanen, S. Andersson, M. Torkkeli, M. Knaapila, N. Kotelnikova, R. Serimaa, Cellulose 16, 999 (2009), doi: 10.1007/s10570-009-9298-9
  • [52] W. Laue, M. Thiemann, E. Scheibler, K.W. Wiegand, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2002., doi: 10.1002/14356007.a17.265
  • [53] Yu.A. Hizhnyi, S.G. Nedilko, V.P. Chornii, M.S. Slobodyanik, I.V. Zatovsky, K.V. Terebilenko, J. Alloys Comp. 614, 20 (2014), doi: 10.1016/j.jallcom.2014.06.111
  • [54] M. Pizzoli, M. Scandola, G. Ceccorulli, Plast. Rubber Composit. Process. Appl. 16, 239 (1991)
  • [55] T.G. Rials, W.G. Glasser, J. Appl. Polym. Sci. 36, 749 (1988), doi: 10.1002/app.1988.070360402
  • [56] P. Wojciechowski, J. Appl. Polym. Sci. 76, 837 (2000), doi: 10.1002/(SICI)1097-4628(20000509)76:6<837::AID-APP9>3.0.CO;2-P
  • [57] M.U. Belii, I.Ya. Kushnirenko, S.G. Nedilko, V.P. Sakun, J. Appl. Spectrosc. 48, 835 (1988)
  • [58] M.H. Brooker, D.E. Irish, Can. J. Chem. 49, 1289 (1971), doi: 10.1139/v71-210
  • [59] J.C. Fanning, Coord. Chem. Rev. 199, 159 (2000), doi: 10.1016/S0010-8545(99)00143-5
  • [60] Y.T. Kononenko, I.Ya. Kushnirenko, S.G. Nedilko, V.P. Sakun, J. Appl. Spectrosc. 42, 85 (1985)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n4p17kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.