Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 676-679

Article title

Magnetocaloric Effect in Amorphous and Partially Crystallized Fe₈₀Zr₇Cr₆Nb₂Cu₁B₄ Alloy

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the present work the microstructure and thermomagnetic properties of Fe₈₀Zr₇Cr₆Nb₂Cu₁B₄ ribbon in the as-quenched state and after the accumulative annealing in the temperature range 600-800 K for 10 min were studied using Mössbauer spectroscopy and vibrating sample magnetometry. The second order phase transition from ferro- to paramagnetic state is observed. The Curie temperature T_{C} defined as inflection point on the magnetization versus temperature curve recorded on zero-field cooled mode equals 262.5 K for the as-quenched material. With increasing the annealing temperature increase of T_{C} is observed. The maximum value of the magnetic entropy change (-ΔS) observed in the vicinity of the Curie point is equal to 0.85 J/(kg K) for the alloy in the as-quenched state. Moreover, for the samples annealed up to 750 K for 10 min the low intensity maximum at about 190 K related to the supplementary magnetic phase is observed. The presence of this phase was confirmed as additional component visible on hyperfine field distributions of Mössbauer spectra.

Keywords

Contributors

author
  • Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Wrocław University of Science and Technology, Smoluchowskiego 25, 50-370 Wrocław, Poland
author
  • Częstochowa University of Technology, Institute of Physics, Armii Krajowej 19, 42-200 Częstochowa, Poland

References

  • [1] M.E. McHenry, M.A. Willard, D.E. Laughlin, Progress in Materials Science 44, 291 (1999), doi: 10.1016/S0079-6425(99)00002-X
  • [2] J.M. Barandiaran, P. Gorria, I. Orue et al., J Phys Condens Matter 9, 5671 (1997), doi: 10.1088/0953-8984/9/26/014
  • [3] W. Pilarczyk, Cryst. Res. Technol. 50, 700 (2015), doi: 10.1002/crat.201400438
  • [4] R. Babilas. A. Radoń, P. Gębara, Acta. Phys. Pol. A 131, 726 (2017), doi: 10.12693/APhysPolA.131.726
  • [5] L.F. Kiss, T. Kemeny, V. Franco, A. Conde, J. Alloys Comp. 622, 756 (2015), doi: 10.1016/j.jallcom.2014.10.127
  • [6] K.A. Gschneidner, V.K. Pecharski, A.O. Tsokol, Rep.Prog. Phys. 68, 1479 (2005), doi: 10.1088/0034-4885/68/6/R04
  • [7] R. A. Brand, Phys. Res. B28, 398 (1987), doi: 10.1016/0168-583X(87)90183-2
  • [8] V.K. Pecharski, K. A. Gschneidner, J. Mag. Mag.Mater., 200, 46 (1999), doi: 10.1016/S0304-8853(99)00397-2
  • [9] A. Łukiewska, Nukleonika 62, 135 (2017), doi: 10.1515/nuka-2017-0019
  • [10] J. Olszewski, Hyperfine Interactions. 131, 83 (2000), doi: 10.1023/A:1010908521903
  • [11] V. Chaudhary, R.V. Ramanujan, IEEE Magn. Lett. 6 (2015), doi: 10.1109/LMAG.2015.2449259
  • [12] X.C. Zhong, H. C. Tian, S. S. Wang, Z. W. Liu, Z. G. Zheng, D. C. Zeng, J. Alloys Comp. 633, 188 (2015), doi: 10.1016/j.jallcom.2015.02.037
  • [13] J. Świerczek, J. Mag. Mag. Mater. 322, 2696 (2010), doi: 10.1016/j.jmmm.2010.04.010

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p104kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.