Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 605-608

Article title

Interlayer Exchange Coupling in Nb/Fe Multilayers

Content

Title variants

Languages of publication

EN

Abstracts

EN
The (110) oriented Nb-Fe multilayers (MLs) with constant Fe and variable Nb sublayer thicknesses were prepared at room temperature using UHV magnetron sputtering. The artificial periodicity was revealed by intense satellite peaks in the low- and high-angle X-ray diffraction patterns. Magnetic hysteresis loop measurements at 5 K revealed antiferromagnetic (AF) exchange coupling of the Fe sublayers for Nb spacer thickness of about 3 monolayers. The corresponding AF coupling energy is equal to about -1.36 mJ/m². The Nb spacer thickness corresponding to the position of the AF peak is in good agreement with ab-initio calculations within localized spin density approximations of exchange-correlation potential.

Keywords

EN

Contributors

  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17 St., 60-179 Poznań, Poland
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17 St., 60-179 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17 St., 60-179 Poznań, Poland
  • WCZT, Adam Mickiewicz University, Umultowska 89C St., 61-614 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17 St., 60-179 Poznań, Poland

References

  • [1] S.S.P. Parkin, Phys. Rev. Lett. 67, 3598 (1991), doi: 10.1103/PhysRevLett.67.3598
  • [2] P. Grünberg, Rev. Mod. Phys. 80, 1531 (2008), doi: 10.1103/RevModPhys.80.1531
  • [3] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chelkanova, D.M. Freger, Science 294, 1488 (2001), doi: 10.1126/science.1065389
  • [4] S. Baltensperger, J. S. Helman, Appl. Phys. Lett. 57, 2954 (1990), doi: 10.1063/1.103737
  • [5] P. Bruno, Europhys. Lett. 23, 615 (1993), doi: 10.1209/0295-5075/23/8/013
  • [6] M. van Schilfgaarde, F. Herman, S.S.P. Parkin, J. Kudrnovský, Phys. Rev. Lett. 74, 4063 (1995), doi: 10.1103/PhysRevLett.74.4063
  • [7] Th. Mühge, N. N. Garif'yanov, Yu. V. Goryunov, G. G. Khaliullin, L. R. Tagirov, K. Westerholt, I. A. Garifullin, H. Zabel, Phys. Rev. Lett. 77, 1857 (1996), doi: 10.1103/PhysRevLett.77.1857
  • [8] J.E. Mattson, C.H. Sowers, A. Berger, S.D. Bader, Phys. Rev. Lett. 68, 3252 (1992), doi: 10.1103/PhysRevLett.68.3252
  • [9] Ch. Rehm, F. Klose, D. Nagengast, H. Maletta, A.Weidinger, Europhys. Lett. 38, 61 (1997), doi: 10.1209/epl/i1997-00535-4
  • [10] F. Klose, Ch. Rehm, D. Nagengast, H. Maletta, A. Weidinger, Phys. Rev. Lett. 78, 1150 (1997), doi: 10.1103/PhysRevLett.78.1150
  • [11] L. Smardz, K. Le Dang, H. Niedoba, K. Chrzumnicka, J. Magn. Magn. Mater. 140-144, 569 (1995), doi: 10.1016/0304-8853(94)01011-0
  • [12] L. Smardz, Sol. State Com. 112, 693 (1999), doi: 10.1016/S0038-1098(99)00426-3
  • [13] L. Smardz, J. Alloys Comp. 395, 17 (2005), doi: 10.1016/j.jallcom.2004.11.027
  • [14] L. Smardz, K. Smardz, H. Niedoba, J. Magn. Magn. Mater. 220, 175 (2000), doi: 10.1016/S0304-8853(00)00457-1
  • [15] J. Skoryna, A. Marczyńska, M. Lewandowski, L. Smardz, J. Alloys Comp. 645, 280 (2015), doi: 10.1016/j.jallcom.2014.12.238
  • [16] J. Skoryna, M. Wachowiak, A. Marczyńska, A. Rogowska, Ł. Majchrzycki, W. Koczorowski, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 119 (2016), doi: 10.1016/j.surfcoat.2016.03.030
  • [17] J. Skoryna, S. Pacanowski, A. Marczyńska, M. Werwiński, Ł. Majchrzycki, R. Czajka, L. Smardz, Surf. Coat. Techn. 303, 125 (2016), doi: 10.1016/j.surfcoat.2016.03.030
  • [18] L. Smardz, M. Nowak, M. Jurczyk, Int. J. of Hydrogen Energy 37, 3659 (2012), doi: 10.1016/j.ijhydene.2011.04.039
  • [19] L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, I. Okońska, Renewable Energy 33, 201 (2008), doi: 10.1016/j.renene.2007.05.006
  • [20] K. Smardz, L. Smardz, I. Okonska, M. Nowak, M. Jurczyk, Int. J. Hydrogen Energy 33, 387 (2008), doi: 10.1016/j.ijhydene.2007.07.032
  • [21] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996), doi: 10.1103/PhysRevB.54.11169
  • [22] M. Pugaczowa-Michalska, J. Kaczkowski, Com. Mat. Science 126, 407 (2017), doi: 10.1016/j.commatsci.2016.10.014
  • [23] A. Marczyńska, J. Skoryna, B. Szymański, L. Smardz, Acta Phys. Pol. A 127, 552 (2015), doi: 10.12693/AphysPolA.127.552
  • [24] L. Smardz, K. Smardz, H. Niedoba, phys. stat. sol. (b) 243, 227 (2006), doi: 10.1002/pssb.200690002
  • [25] L. Smardz, K. Smardz, Mat. Sci. (Poland) 24, 821 (2006)
  • [26] A. Marczyńska, J. Skoryna, L. Smardz, Acta Phys. Pol. A 126, 1315 (2014), doi: 10.12693/APhysPolA.126.1315
  • [27] Nitya Nath Shukla, R. Prasad, Phys. Rev. B 70, 014420 (2004), doi: 10.1103/PhysRevB.70.014420

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p083kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.