Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 133 | 3 | 435-437

Article title

Computation of Latent Heat based on the Energy Distribution Histogram in the 3D Ashkin-Teller Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
The method of computation of the latent heat based on the energy distribution histogram is applied to the standard 3D Ashkin-Teller (AT) model. Similarly as in the original method for the q-state Potts model for strong first order phase transitions, the characteristic histogram with two peaks in the critical region have been observed. Positions of two minima of negative logarithm of internal energy probability for samples of finite size show good linear scalability to the thermodynamic limit. The applicability of this method has been confirmed by proving that the latent heat values are consistent with the ones obtained by us using the analysis of the behavior of the cumulants of the type of Challa and of Lee-Kosterlitz. The presented method is far more efficient than the one based on those cumulants.

Keywords

EN

Contributors

  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
author
  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

References

  • [1] J. Ashkin, E. Teller, Phys. Rev. 64, 178 (1943), doi: 10.1103/PhysRev.64.178
  • [2] C. Fan, Phys. Lett. 39A, 136 (1972), doi: 10.1016/0375-9601(72)91051-1
  • [3] J. P. Santos, F. C. Sá Barreto, Braz. J. Phys. 46, 70 (2016), doi: 10.1007/s13538-015-0385-0
  • [4] R. J. Baxter, Exactly Solvable Models in Statistical Mechanics, Academic Press, London 1982
  • [5] P. Arnold, Y. Zhang, Nuclear Phys. B 501, 803 (1997), doi: 10.1016/S0550-3213(97)00405-7
  • [6] L. F. Feiner, A. M. Oleś, Phys. Rev. B 59, 3295 (1999), doi: 10.1103/PhysRevB.59.3295
  • [7] G. Musiał, Phys. Rev. B 69, 024407 (2004), doi: 10.1103/PhysRevB.69.024407
  • [8] G. Szukowski, G. Kamieniarz, G. Musiał, Phys. Rev. E 77, 031124 (2008), doi: 10.1103/PhysRevE.77.031124
  • [9] D. Jeziorek-Knioła, G. Musiał, L. Dębski, J. Rogiers, S. Dylak, Acta. Phys. Pol. A 121, 1105 (2012), doi: 10.12693/APhysPolA.121.1105
  • [10] D. Jeziorek-Knioła, G. Musiał, Z. Wojtkowiak, Acta. Phys. Pol. A 127, 327 (2015), doi: 10.12693/APhysPolA.127.327
  • [11] J. Lee, J. M. Kosterlitz, Phys. Rev. B 43, 3265 (1991), doi: 10.1103/PhysRevB.43.3265
  • [12] M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986), doi: 10.1103/PhysRevB.34.1841
  • [13] K. Binder, D.P. Landau, Phys. Rev. B 30, 1477 (1984), doi: 10.1103/PhysRevB.30.1477

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv133n3p030kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.