Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 6 | 1713-1718

Article title

Entanglement Conditions Involving Intensity Correlations of Optical Fields: the Case of Multi-Port Interferometry

Content

Title variants

Languages of publication

EN

Abstracts

EN
Normalized quantum Stokes operators introduced in Phys. Rev. A 95, 042113 (2017) enable one to better observe non-classical correlations of entangled states of optical fields with undefined photon numbers. For a given run of an experiment the new quantum Stokes operators are defined by the differences of the measured intensities (or photon numbers) at the exits of a polarizer divided by their sum. It is this ratio that is to be averaged, and not the numerator and the denominator separately, as it is in the conventional approach. The new approach allows to construct more robust entanglement indicators against photon-loss noise, which can detect entangled optical states in situations in which witnesses using standard Stokes operators fail. Here we show an extension of this approach beyond phenomena linked with polarization. We discuss EPR-like experiments involving correlations produced by optical beams in a multi-mode bright squeezed vacuum state. EPR-inspired entanglement conditions for all prime numbers of modes are presented. The conditions are much more resistant to noise due to photon loss than similar ones which employ standard Glauber-like intensity, correlations.

Keywords

Contributors

author
  • Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
  • Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
author
  • Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
author
  • Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
  • Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
  • Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
  • Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore
author
  • Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
  • Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

References

  • [1] M. Żukowski, W. Laskowski, M. Wieśniak, Phys. Rev. A 95, 042113 (2017), doi: 10.1103/PhysRevA.95.042113
  • [2] M. Zukowski, M. Wieśniak, W. Laskowski, Phys. Rev. A 94, 020102(R) (2016), doi: 10.1103/PhysRevA.94.020102
  • [3] M.D. Reid, D.F. Walls, Phys. Rev. A 34, 1260 (1986), doi: 10.1103/PhysRevA.34.1260
  • [3a] D.F. Walls, G.J. Milburn, Quantum Optics, Springer, Berlin 1994. http://springer.com/br/book/9783540588313
  • [4] C. Simon, D. Bouwmeester, Phys. Rev. Lett. 91, 053601 (2003), doi: 10.1103/PhysRevLett.91.053601
  • [5] K. Rosolek, K. Kostrzewa, A. Dutta, W. Laskowski, M. Wieśniak, M. Żukowski, Phys. Rev. A 95, 042119 (2017), doi: 10.1103/PhysRevA.95.042119
  • [6] C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987), doi: 10.1103/PhysRevLett.59.2044
  • [7] J. Ryu, M. Marciniak, M. Wieśniak, M Żukowski, arXiv: 1601.02233 http://arXiv.org/abs/1601.02233
  • [8] M. Żukowski, A. Zeilinger, M.A. Horne, Phys. Rev. A 55, 2564 (1997), doi: 10.1103/PhysRevA.55.2564
  • [9] A. Zeilinger, H.J. Bernstein, D.M. Greenberger, H.A. Horne, M. Żukowski, Controlling Entanglement in Quantum Optics, in: Quantum Control Measurement, Eds. H. Ezawa, Y. Murayama, Elsevier Sci., 1993, p. 9
  • [9a] A. Zeilinger, M. Żukowski, M.A. Horne, H.J. Bernstein, D.M. Greenberger, Einstein-Podolsky-Rosen Correlations in Higher Dimensions, in: Fundamental Aspects of Quantum Theory, Eds. J. Anandan, J.L. Safko, World Scientific, Singapore 1993, p. 153
  • [10] N.G. Walker, J.E. Carroll, Opt. Quantum Electron. 18, 355 (1986), doi: 10.1007/BF02032562
  • [10a] N.G. Walker, J. Mod. Opt. 34, 15 (1987), doi: 10.1103/PhysRevLett.73.58
  • [11] M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994), doi: 10.1103/PhysRevLett.73.58
  • [12a] C. Schaeff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger, Optica 2, 523 (2015), doi: 10.1364/OPTICA.2.000523
  • [12b] C. Schaeff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger, arXiv: 1502.06504 http://arxiv.org/abs/1502.06504
  • [12c] K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger M. Żukowski, Applied Physics B: Lasers Optics 60 (2-3), S111 (1995) http://arXiv.org/abs/1502.06504
  • [12d] K. Mattle, M. Michler, H. Weinfurter, A. Zeilinger M. Żukowski, Applied Physics B: Lasers Optics 60 (2-3), S111
  • [13] J.W. Pan, Z.B. Chen, C.Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys. 84, 777 (2012), doi: 10.1103/RevModPhys.84.777
  • [14] W.K. Wootters, B.D. Fields, Ann. Phys. 191, 363 (1989), doi: 10.1016/0003-4916(89)90322-9
  • [15] I.D. Ivanovic, J. Phys. A 14, 3241 (1981), doi: 10.1088/0305-4470/14/12/019

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n6p12kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.