Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 6 | 1655-1660

Article title

Experimental Study of Quantum Graphs with Simple Microwave Networks: Non-Universal Features

Content

Title variants

Languages of publication

EN

Abstracts

EN
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. The networks which are large compared to the wavelength, are constructed from coaxial cables connected by T junctions. The distributions of impedance statistics are obtained from experiments on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. It is argued that because of the small finite-size quantum graphs utilized here there will be non-universal results.

Year

Volume

132

Issue

6

Pages

1655-1660

Physical description

Dates

published
2017-12

Contributors

author
  • Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742-4111 USA
author
  • Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
author
  • Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
author
  • Department of Physics, University of Maryland, College Park, MD 20742-4111 USA
author
  • Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742-4111 USA
  • Department of Physics, University of Maryland, College Park, MD 20742-4111 USA

References

  • [1] S. Gnutzmann, U. Smilansky, Adv. Phys. 55, 527 (2006), doi: 10.1080/00018730600908042
  • [2] M. Freedman, L. Lovász, A. Schrijver, J. Amer. Math. Soc. 20, 37 (2007), doi: 10.1090/S0894-0347-06-00529-7
  • [3] O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko, Phys. Rev. E 69, 056205 (2004), doi: 10.1103/PhysRevE.69.056205
  • [4] M. Lawniczak, O. Hul, S. Bauch, P. Seba, L. Sirko, Phys. Rev. E 77, 056210 (2008), doi: 10.1103/PhysRevE.77.056210
  • [5] M. Lawniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. T 135, 014050 (2009), doi: 10.1088/0031-8949/2009/135/014050
  • [6] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. T 143, 014014 (2011), doi: 10.1088/0031-8949/2011/T143/014014
  • [7] X. Li, C. Meng, Y. Liu, E. Schamiloglu, S.D. Hemmady, IEEE Trans. Electromag. Compat. 57, 448 (2015), doi: 10.1109/TEMC.2014.2384482
  • [8] G. Gradoni, J.-H. Yeh, B. Xiao, T.M. Antonsen, S.M. Anlage, E. Ott, Wave Motion 51, 606 (2014), doi: 10.1016/j.wavemoti.2014.02.003
  • [9] X. Zheng, T.M. Antonsen Jr., E. Ott, Electromagnetics 26, 3 (2006), doi: 10.1080/02726340500214894
  • [10] X. Zheng, T.M. Antonsen Jr., E. Ott, Electromagnetics 26, 37 (2006), doi: 10.1080/02726340500214902
  • [11] J.-H. Yeh, J. Hart, E. Bradshaw, T. M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 81, 025201 (2010), doi: 10.1103/PhysRevE.81.025201
  • [12] J.A. Hart, T.M. Antonsen, E. Ott, Phys. Rev. E 80, 041109 (2009), doi: 10.1103/PhysRevE.80.041109
  • [13] X. Zheng, S. Hemmady, T.M. Antonsen Jr., S.M. Anlage, E. Ott, Phys. Rev. E 73, 046208 (2006), doi: 10.1103/PhysRevE.73.046208
  • [14] S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005), doi: 10.1103/PhysRevLett.94.014102
  • [15] B.D. Addissie, J.C. Rodgers, T.M. Antonsen Jr., 2015 IEEE Metrology for Aerospace (MetroAeroSpace), pp.214-219, IEEE Metrology for Aerospace (MetroAeroSpace), Benevento 2015, p. 214, doi: 10.1109/MetroAeroSpace.2015.7180656
  • [16] Z.B. Drikas, J. Gil Gil, S.K. Hong, T.D. Andreadis, J.-H. Yeh, B.T. Taddese, S.M. Anlage, IEEE Trans. Electromag. Compat. 56, 1480 (2014), doi: 10.1109/TEMC.2014.2337262
  • [17] M.V. Berry, Les Houches Summer School 1981 on Chaotic Behaviour of Deterministic Systems, Eds.: G. Iooss, H.G. Helleman, R. Stora, North-Holland, Amsterdam 1983, p. 171 http://inis.iaea.org/search/search.aspx?orig_q=RN:16062000
  • [18] S. Hemmady, T.M. Antonsen Jr., E. Ott, S.M. Anlage, IEEE Trans. Electromag. Compat. 54, 758 (2012), doi: 10.1109/TEMC.2011.2177270
  • [19] J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 82, 041114 (2010), doi: 10.1103/PhysRevE.82.041114
  • [20] J. Gil Gil, Z.B. Drikas, T.D. Andreadis, S.M. Anlage, IEEE Trans. Electromag. Compat. 58, 1535 (2012), doi: 10.1109/TEMC.2016.2580301
  • [21] Plühar, H. Weidenmuller, Phys.Rev. Lett. 110, 034101 (2013), doi: 10.1103/PhysRevLett.110.034101
  • [22] B. Dietz, V. Yunko, M. Bialous, S, Bauch, M. Lawniczak, L. Sirko, Phys. Rev. E 95, 052202 (2017), doi: 10.1103/PhysRevE.95.052202
  • [23] M. Bialous,V. Yunko, S, Bauch, M. Lawniczak, B. Dietz, L. Sirko, Phys.Rev. Lett. 117, 144101 (2016), doi: 10.1103/PhysRevLett.117.144101
  • [24] S. Gnutzmann, A. Altland, Phys. Rev. E 72, 056215 (2005), doi: 10.1103/PhysRevE.72.056215
  • [25] O. Hul, P. Seba, L. Sirko, Phys. Rev. E 79, 066204 (2009), doi: 10.1103/PhysRevE.79.066204
  • [26] T. Kottos, U. Smilansky, J. Phys. A: Math. Gen. 36, 12 (2003), doi: 10.1088/0305-4470/36/12/337

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n6p01kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.