Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1634-1636

Article title

Optimization of Positron-Lifetime Measurement Geometry Based on Geant4 Simulation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Proper choice of measuring geometry and experimental setup of nuclear instrumentation modules and photomultipliers is a key element which affects substantial positron lifetime measurement properties: count rate and time resolution. An adequate compromise must be found, when it comes to geometry of measurement. The optimal geometry using three detector layout is inspected in this paper. During our work, we concentrated on the simulation of XP2020Q photomultipliers and the BaF₂ scintillator material. The Geant4 simulation allows to estimate an influence of the measuring geometry on detection efficiency and to choose the most appropriate crystals dimensions and positions. As mentioned in paper of Bečvaŕ et al., slight changes in geometry result in distortion or improvement of measured results. Experimental results already showed, changes of start crystals dimensions can result in significant increase in count rate of three-detector measurement.

Keywords

EN

Year

Volume

132

Issue

5

Pages

1634-1636

Physical description

Dates

published
2017-11

Contributors

author
  • Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia
author
  • Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia
author
  • Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 81219 Bratislava, Slovakia

References

  • [1] F. Bečvář, J. Čížek, L. Lešták, I. Novotný, I. Procházka, F. Šebesta, Nucl. Instrum. Methods Phys. Res. A 443, 557 (2000), doi: 10.1016/S0168-9002(99)01156-0
  • [2] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Solids. Defect Studies, Springer, Berlin 1999, p. 378 http://springer.com/in/book/9783540643715
  • [3] L.Yu. Dubov, V.I. Grafutin, Yu.V. Funtikov, Yu.V. Shtotsky, L.V. Elnikova, Nucl. Instrum. Methods Phys. Res. B 334, 81 (2014), doi: 10.1016/j.nimb.2014.05.006
  • [4] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003), doi: 10.1016/S0168-9002(03)01368-8
  • [5] Geant4 Collaboration, Geant4 Application Developers Guide http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch05.html#sect.Track.AccInfo

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n5p44kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.