Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1509-1514

Article title

Proton Conductivity and Free Volume Properties in Per-Fluorinated Sulfonic acid/PTFE Copolymer for Fuel Cell

Content

Title variants

Languages of publication

EN

Abstracts

EN
The proton conductivity mechanism in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte membranes has been investigated. Three samples of Fumapem® F-950, F-1050 and F-14100 membranes with different ion exchange capacity 1.05, 0.95, and 0.71 meq/g, respectively, were used in this study after drying. The o-Ps hole volume size (V_{FV,Ps}) was quantified using the positron annihilation lifetime technique while the proton conductivities (σ ) were measured using LCR Bridge as function of temperature. It was found that as the ion exchange capacity increases, the proton conductivity increases and the free volume expands. Temperature dependences of proton conductivity and the o-Ps hole volume size (V_{FV,Ps}) reflect the glass transition temperature of the membrane. A good linear correlation between the reciprocal of the o-Ps hole volume size (1/V_{FV,Ps}) and log(σ)+Δ E_a/2.303k_{B}T, (where ΔE_a is the activation energy, T is the absolute temperature and k_{B} is the Boltzmann constant) at different temperatures indicate that the ionic motion in dry Fumapem® is governed by the free volume. A linear relationship between the critical hole size γ V*_{i} and the ion exchange capacity was also achieved.

Keywords

Contributors

author
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt
  • Renewable Energy Science & Engineering Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University, P.O. Box 62511 Beni-Suef, Egypt
author
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt
  • Physics Department, Faculty of Science, Minia University, P.O. Box 61519 Minia, Egypt

References

  • [1] G. Hoogers, in: Fuel Cell Technology Handbook, Ch. 9, CRC Press, Boca Raton (FL) 2002 http://taylorfrancis.com/books/9781420041552
  • [2] B. Sørensen, in: Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier Academic Press, London 2005 http://books.google.pl/books?id=QQfOilpWeEQC&printsec=frontcover$&hl=pl&source=gbs_ViewAPI&redir_esc=y#v=onepage&q&f=false
  • [3] R.P. O'Hayre, S.W. Cha, W. Colella, F.B. Prinz, in:Fuel Cell: Fundamentals, Wiley, New York 2005, doi: 10.1002/9781119191766
  • [4] F. Barbir, in: PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, MA 2005 http://sciencedirect.com/science/book/9780120781423
  • [5] H.F.M. Mohamed, K. Ito, Y. Kobayashi, N. Takimoto, Y. Takeoka, A. Ohira, Polymer 49, 3091 (2008), doi: 10.1016/j.polymer.2008.05.003
  • [6] M. Wakizoe, O. Velev, A.S. Srinivasan, Electrochim. Acta 40, 335 (2001), doi: 10.1016/0013-4686(94)00269-7
  • [7] H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E.V. Wagner, B.D. Freeman, D.J. Cookson, Science 318, 254 (2007), doi: 10.1126/science.1146744
  • [8] O. Borodin, G.D. Smith, Macromolecules 39, 1620 (2006), doi: 10.1021/ma052277v
  • [9] N. Petzetakis, C.M. Doherty, A.W. Thornton, X.C. Chen, P. Cotanda, A.J. Hill, N.P. Balsara, Nature Commun. 6, 7629-1 (2015), doi: 10.1038/ncomms8529
  • [10] S.T. Tao, J. Chem. Phys. 56, 5499 (1972), doi: 10.1063/1.1677067
  • [11] M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981), doi: 10.1016/0301-0104(81)80307-2
  • [12] H. Nakanishi, S.J. Wang, Y.C. Jean, in: Positron Annihilation Studies of Fluids, Ed. S.C. Sharam, World Sci., Singapore 1988, p. 292
  • [13] J.V. Olsen, P. Kirkegaard, N.J. Pedersen, M. Eldrup, Phys. Status Solidi C 4, 4004 (2007), doi: 10.1002/pssc.200675868
  • [14] S. Devikal, P. Kamaraja, M. Arthanareeswari, Chem. Sci. Trans. 2, S129 (2013), doi: 10.7598/cst2013.26
  • [15] K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, Y. Kobayashi, J. Rad. Phys. Chem. 58, 525 (2000), doi: 10.1016/S0969-806X(00)00211-5
  • [16] H. Park, Y. Kim, W.H. Hong, Y.S. Choi, H. Lee, Macromolecules 38, 2289 (2005), doi: 10.1021/ma047650y
  • [17] Y. Park, Y. Yamazaki, Polym. Bull. 53, 181 (2005), doi: 10.1007/s00289-004-0310-0
  • [18] H.F.M. Mohamed, Y. Ito, M. Imai, J. Chem. Phys. 105, 4841 (1996), doi: 10.1063/1.472321
  • [19] H.F.M. Mohamed, K. Ito, Y. Kobayashi, N. Takimoto, Y. Takeoka, A. Ohira, Polymer 49, 3091 (2008), doi: 10.1021/jp808960w
  • [20] C.L. Wang, Y. Kobayashi, W. Zheng, C. Zhang, Y. Nagai, M. Hasegawa, Phys. Rev. B 63, 064204 (2001), doi: 10.1103/PhysRevB.63.064204
  • [21] M. Hema, S. Selvasekarapandian, H. Nithya, A. Sakunthala, D. Arunkumar, Ionics 15, 487 (2009), doi: 10.1007/s11581-008-0254-8
  • [22] N. Agmon, Chem. Phys. Lett. 244, 456 (1995), doi: 10.1016/0009-2614(95)00905-J
  • [23] F. Loureiro, E.S. de Marins, G.D.C. dos Anjos, A.M. Rocco, R.P. Pereira, Polímeros 24, 49 (2014), doi: 10.4322/polimeros.2014.070
  • [24] R.K. Nagarale, G.S. Gohil, V.K. Shahi, J. Membrane Sci. 280, 389 (2006), doi: 10.1016/j.memsci.2006.01.043
  • [25] T. Miyamoto, K. Shibayama, J. Appl. Phys. 44, 5372 (1973), doi: 10.1063/1.1662158
  • [26] S.J. Pas, M.D. Ingram, K. Funke, A.J. Hill, Electrochim. Acta 50, 3955 (2005), doi: 10.1016/j.electacta.2005.02.058

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n5p15kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.