Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 5 | 1501-1505

Article title

Free-Volume and Tensile Properties of Glass Fibre Reinforced Polyamide 6 Composites

Content

Title variants

Languages of publication

EN

Abstracts

EN
The tensile properties and free volume of commercially available modified polyamid 6 and polyamid 6 composites with 15 and 30 wt% of glass fibre were the subject of the studies. The tensile test allowed us to obtain the stress-strain curves and determine the tensile properties of the polyamid 6 samples. The positron lifetime measurements were performed for the samples before the test and for the samples in the vicinity of the break after they failed. The composites exhibited slightly lower values of the ortho-positronium lifetime and therefore smaller size of the local free volumes in comparison to polyamid 6 without reinforcement. The analysis of the positron lifetime spectra indicated size distribution of the free volume. The initially narrower distributions for the composite samples became broader as a result of the deformation. The deformation caused also increase of the ortho-positronium intensity in the obtained positron lifetime spectra.

Keywords

EN

Contributors

author
  • Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
author
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland

References

  • [1] A.S. Argon, V.V. Butalov, P.H. Mott, U.W. Suter, J. Rheol. 39, 377 (1995), doi: 10.1063/1.478655
  • [2] S. Goyanes, G. Rubiolo, W. Salgueiro, A. Somoza, Polymer 46, 9081 (2005), doi: 10.1016/j.polymer.2005.07.020
  • [3] S.T. Tao, J. Chem. Phys. 56, 5499 (1972), doi: 10.1063/1.1677067
  • [4] N. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981), doi: 10.1016/0301-0104(81)80307-2
  • [5] J. Kansy, Nucl. Instrum. Methods Phys. Res. A 374, 235 (1996), doi: 10.1016/0168-9002(96)00075-7
  • [6] M. Dębowska, J. Pigłowski, C. Ślusarczyk, P. Schmidt, J. Rudzińska-Girulska, T. Suzuki, R. Yu, W. Biniaś, Fibres Text. East. Eur. 13, 64 (2005)
  • [7] Data Book-JPS Composite Materials, JPS Industries Inc. Company, US http://jpscompositematerials.com/docslide.us_jpsdatabook-55845c9747baf-4.pdf
  • [8] N. Sato, T. Kurauchi, S. Sato, O. Kamigaito, J. Mater. Sci. 26, 3891 (1991), doi: 10.1007/BF01184987
  • [9] S. Mortazavian, A. Fatemi, A. Khosrovaneh, SAE Int. J. Mater. Manuf. 8, 435 (2015), doi: 10.4271/2015-01-0546
  • [10] G. Dlubek, F. Redmann, R. Krause-Rehberg, J. Appl. Polym. Sci. 84, 244 (2002), doi: 10.1002/app.10319
  • [11] G. Dlubek, M. Stolp, Ch. Nagel, H.M. Fretwell, M.A. Alam, H.-J. Radusch, J. Phys. Condens. Matter 10, 10443 (1998), doi: 10.1088/0953-8984/10/46/012
  • [12] S. Awad, H. Chen, X. Gu, J.L. Lee, E.E. Abdel-Hady, Y.C. Jean, Macromolecules 44, 29 (2011), doi: 10.1021/ma102366d
  • [13] L.M. Munirathnamma, H.B. Ravikumar, J. Appl. Polym. Sci. 133, (2016), doi: 10.1002/APP.43647
  • [14] Y. Men, J. Rieger, K. Hong, J. Polym. Sci. B Polym. Phys. 43, 87 (2005), doi: 10.1002/polb.20310
  • [15] C. Millot, R. Séguéla, O. Lame, L.-A. Fillot, C. Rochas, P. Sotta, Macromolecules 50, 1541 (2017), doi: 10.1021/acs.macromol.6b02471

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n5p13kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.