Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 564-569

Article title

Synthesis, Characterization and Cr(VI) Adsorption Properties of Modified Magnetite Nanoparticles

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, magnetite (Fe₃O₄) nanoparticles were synthesized by chemical co-precipitation method, coated with silica, and then the surface of silica coated magnetite (Fe₃O₄@SiO₂) nanoparticles was modified with (3-aminopropyl)triethoxysilane (APTES) at first. Secondly, attained nanoparticles were characterized by the Fourier transform infrared, X-ray diffraction, transmission electron microscopy, the Brunauer-Emmett-Teller, vibrating sample magnetometer, and zeta-sizer devices/methods. Finally, detailed adsorption experiments were performed to remove hexavalent chromium (Cr(VI)) from aqueous media by synthesized nanoparticles. Mean size and specific surface area of synthesized nanoparticles were about 15 nm and 89.5 m²/g, respectively. The highest adsorption capacity among used adsorbents (Fe₃O₄, Fe₃O₄@SiO₂, Fe₃O₄@SiO₂@L) was attained by Fe₃O₄ nanoparticles and it was determined that adsorption capacity of the other two adsorbents was too low when compared to the Fe₃O₄ nanoparticles. Optimum conditions for Cr(VI) adsorption by Fe₃O₄ nanoparticles were: pH, 3; temperature, 55°C; contact time, 90 min; adsorbent concentration, 0.5 g/l and initial Cr(VI) concentration 10 mg/l. Under these conditions, adsorption capacity and removal percentage of Cr(VI) were found to be 33.45 mg/g and 88%, respectively.

Year

Volume

132

Issue

3

Pages

564-569

Physical description

Dates

published
2017-09

Contributors

author
  • Afyon Kocatepe University, Mining Engineering Department, Afyonkarahisar, Turkey
author
  • Afyon Kocatepe University, Mining Engineering Department, Afyonkarahisar, Turkey
author
  • Afyon Kocatepe University, Material Science and Engineering Department, Afyonkarahisar, Turkey

References

  • [1] W. Laslouni, Z. Hamlati, M. Azzaz, Acta. Phys. Pol. A 128, B-190 (2015), doi: 10.12693/APhysPolA.128.B-190
  • [2] W. Laslouni, M. Azzaz, Acta. Phys. Pol. A 130, 112 (2016), doi: 10.12693/APhysPolA.130.112
  • [3] H. Mutuk, T. Mutuk, H. Gümüs, B. Mesci Oktay, Acta. Phys. Pol. A 130, 172 (2016), doi: 10.12693/APhysPolA.130.172
  • [4] F. Göde, F. Yavuz, I.A. Kariper, Acta. Phys. Pol. A 128, B-215 (2015), doi: 10.12693/APhysPolA.128.B-215
  • [5] A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, Compt. Rend. Chim. 8, 963 (2005), doi: 10.1016/j.crci.2005.01.001
  • [6] H. Bagheri, A. Afkhami, M. Saber-Tehrani, H. Khoshsafar, Talanta 97, 87 (2012), doi: 10.1016/j.talanta.2012.03.066
  • [7] F. Fajaroh, H. Setyawan, A. Nur, W. Lenggoro, Adv. Powd. Technol. 24, 507 (2013), doi: 10.1016/j.apt.2012.09.008
  • [8] M.H. Farimani, N. Shahtahmasebi, M. Rezaee Roknabadi, N. Ghows, A. Kazemi, Physica E 53, 207 (2013), doi: 10.1016/j.physe.2013.04.032
  • [9] Y.S. Li, J.S. Church, A.L. Woodhead, F. Moussa, Spectrochim. Acta A 76, 484 (2010), doi: 10.1016/j.saa.2010.04.004
  • [10] Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Coll. Surf. A Physicochem. Eng. Asp. 262, 87 (2005), doi: 10.1016/j.colsurfa.2005.04.009
  • [11] Y. Xu, Y. Zhou, W. Ma, J. Nanopart. Res. 15, 1716 (2013), doi: 10.1007/s11051-013-1716-0
  • [12] W. Slooff, Integrated Criteria Document Chromium, Report no. 758701002, National Institute of Public Health and Environmental Protection, Bilthoven, Netherlands 1989
  • [13] World Health Organization (WHO), Chromium, Environmental Health Criteria, No. 61, Geneva 1988 http://inchem.org/documents/ehc/ehc/ehc61.htm
  • [14] U. Förstner, G.T.W. Wittmann, Metal Pollution in the Aquatic Environment, 2nd ed., Springer-Verlag, Berlin 1981 http://springer.com/gp/book/9783540128564
  • [15] H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, Biores. Technol. 99, 6271 (2008), doi: 10.1016/j.biortech.2007.12.002
  • [16] A.E. Sikaily, A.E. Nemr, A. Khaled, O. Abdelwehab, J. Hazard. Mater. 148, 216 (2007), doi: 10.1016/j.jhazmat.2007.01.146
  • [17] World Health Organization (WHO), Guidelines for drinking-water quality, 3rd ed., Geneva 1:334, 2004 http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf
  • [18] M.M. Amin, A. Khodabakhshi, M. Mozafari, B. Bina, S. Kheiri, Environ. Eng. Manag. J. 9, 921 (2010)
  • [19] J. Hu, I.M.C. Lo, G. Chen, Water Sci. Technol. 50, 139 (2004)
  • [20] R. Massart, IEEE Trans. Magn. 17, 1247 (1981), doi: 10.1109/TMAG.1981.1061188
  • [21] W. Stöber, A. Fink, E. Bohn, J. Coll. Interf. Sci. 26, 62 (1968), doi: 10.1016/0021-9797(68)90272-5
  • [22] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938), doi: 10.1021/ja01269a023
  • [23] APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC 1995 http://mwa.co.th/download/file_upload/SMWW_1000-3000.pdf
  • [24] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed., Wiley, London 1970, doi: 10.1002/9780470405840
  • [25] A. Evcin, N.Ç. Bezir, R. Kayalı, M. Kasıkçı, A. Oktay, Acta. Phys. Pol. A 128, B-303 (2015), doi: 10.12693/APhysPolA.128.B-303
  • [26] S. Sadeghi, H. Azhdari, H. Arabi, A.Z. Moghaddam, J. Hazard. Mater. 215, 208 (2012), doi: 10.1016/j.jhazmat.2012.02.054
  • [27] X. Zhao, Y. Shi, T. Wang, Y. Cai, G. Jiang, J. Chromatogr. A 1188, 140 (2008), doi: 10.1016/j.chroma.2008.02.069
  • [28] S. Wang, J. Tang, H. Zhao, J. Wana, K. Chen, J. Coll. Interf. Sci. 432, 43 (2014), doi: 10.1016/j.jcis.2014.06.062
  • [29] J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, J. Coll. Interf. Sci. 349, 293 (2010), doi: 10.1016/j.jcis.2010.05.010
  • [30] D. Mohan, C.U. Pittman, Jr., J. Hazard. Mater. B 137, 762 (2006), doi: 10.1016/j.jhazmat.2006.06.060
  • [31] H. Zhang, Y. Tang, D. Cai, X. Liu, X. Wang, Q. Huang, Z. Yu, J. Hazard. Mater. 181, 801 (2010), doi: 10.1016/j.jhazmat.2010.05.084
  • [32] U.K. Garg, M.P. Kaur, V.K. Garg, D. Sud, Biores. Technol. 99, 1325 (2008), doi: 10.1016/j.biortech.2007.02.011
  • [33] C. Namasivayam, D. Sangeetha, J. Hazard. Mater. 135, 449 (2006), doi: 10.1016/j.jhazmat.2005.11.066
  • [34] K. Fukushi, T. Sato, Environ. Sci. Technol. 39, 1250 (2005), doi: 10.1021/es0491984
  • [35] Y. Jung, J. Choi, W. Lee, Chemosphere 68, 1968 (2007), doi: 10.1016/j.chemosphere.2007.02.028
  • [36] P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu, H. He, J. Hazard. Mater. 173, 614 (2010), doi: 10.1016/j.jhazmat.2009.08.129
  • [37] P. Yuan, M. Fan, D. Yang, H. He, D. Liu, A. Yuan, J. Zhu, T. Chen, J. Hazard. Mater. 166, 821 (2009), doi: 10.1016/j.jhazmat.2008.11.083
  • [38] W. Rieman, H. Walton, Ion-Exchange in Analytical Chemistry, International Series of Monographs in Analytical Chemistry, Vol. 38, Pergamon Press, Oxford 1970 http://sciencedirect.com/science/book/9780080155111

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n3p044kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.