Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 132 | 3 | 553-557

Article title

Numerical Investigation on Hydrodynamic Combustion and NO_x Emission Behavior in 8 MW Circulating Fluidized Bed

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Multi-phase flow is one of the types of flow which is frequently observed in natural phenomena and engineering applications. Circulating fluidized beds constitute an important application of multi-phase flow. The combustion and emission behaviours in circulating fluidized beds are determined by hydrodynamic of bearing. The most appropriate combustion can be provided with the hydrodynamic structure of bearing, taking into account fuel and operating parameters. Therefore, the hydrodynamic structure of circulating fluidized beds should be displayed with mathematical/physical modelling and simulation approach for its analysis and synthesis. Mathematical analysis in today's conditions is very difficult or impossible because of excessive turbulence, unstable and two-phase flow characteristics of the bed. Therefore, the most effective way to do this is the use the physical modelling and simulation approach. In this study, 8 MW circulating fluidized bed hydrodynamic analysis are made by ANSYS-FLUENT R14 commercial CFD code and then combustion and emissions analysis are made with hydrodynamic analysis results. These analysis results show that combustion chamber exit mean NO_x emission was 38.5 ppm and combustion chamber exit mean temperature was 1123 K.

Year

Volume

132

Issue

3

Pages

553-557

Physical description

Dates

published
2017-09

Contributors

author
  • Suleyman Demirel University, Mechanical Engineering Department, Isparta, Turkey
author
  • Suleyman Demirel University, Mechanical Engineering Department, Isparta, Turkey
author
  • Suleyman Demirel University, Mechanical Engineering Department, Isparta, Turkey

References

  • [1] A. Güngör, N. Eskin, Tesisat Mühendisliği Dergisi 84, 7 (2004) http://arsiv.mmo.org.tr/pdf/11995.pdf
  • [2] S. Dülger, Ph.D. Thesis, Ankara 2008
  • [3] P. Mirek, R. Sekret, W. Nowak, in: Proc. Fluidization XII, New Horizons in Fluidization Engineering, Vancouver 2007, p. 969
  • [4] O. Erbaş, H. Topal, A. Durmaz, Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16 91 (2008), (in Turkish) http://birimler.dpu.edu.tr/app/views/panel/ckfinder/userfiles/16/files/Dergiler/16/11.pdf
  • [5] M. Weng, J. Plackmeyer, in: Proc. 10th Int. Conf. on Circulating Fluidized Beds and Fluidization Technology - CFB-10, 2011, Ed. T.M. Knowlton, p. 545
  • [6] K.M. Pandey, R. Kumar, Int. J. Chem. Eng. Appl. 2, 5 (2011), doi: 10.7763/IJCEA.2011.V2.140
  • [7] S. Portrat, B. Lemire, Cognit. Comput. 7, 333 (2015), doi: 10.1007/s12559-014-9294-8
  • [8] G. Li, Z.Y. Liu, Hou-Biao Li, P. Ren, Cognit. Comput. 8, 910 (2016), doi: 10.1007/s12559-016-9410-z
  • [9] Ö. Karaçalı, Acta. Phys. Pol. A 130, 249 (2016), doi: 10.12693/APhysPolA.130.249
  • [10] B. Nagy, Acta. Phys. Pol. A 128, B-164 (2015), doi: 10.12693/APhysPolA.128.B-164
  • [11] J.P. Simanjuntak, Z.A. Zainal, M.Z. Abdullah, Int. J. Renew. Energy Biofuels , 993061 (2014)
  • [12] M. Gharebaghi, R.M.A. Irons, L. Ma, M. Pourkashanian, A. Pranzitelli, Int. J. Greenhouse Gas Contr. 5S, S100 (2011), doi: 10.1016/j.ijggc.2011.05.030
  • [13] P. Stopford, Appl. Math. Modell. 26, 351 (2002), doi: 10.1016/s0307-904x(01)00066-x
  • [14] Y. Jiang, G. Qiu, H. Wang, Chem. Eng. Sci. 109, 85 (2014), doi: 10.1016/j.ces.2014.01.029
  • [15] H. Liu, A. Elkamel, A. Lohi, M. Biglari, Ind. Eng. Chem. Res. 52, 18162 (2013), doi: 10.1021/ie4024148
  • [16] J. Xie, W. Zhong, B. Jin, Y. Shao, H. Liu, Energy Fuels 28, 5523 (2014), doi: 10.1021/ef501095r
  • [17] L.G. Gibilaro, R. Di Felice, S.P. Waldram, Chem. Eng. Sci. 40, 1817 (1985), doi: 10.1016/0009-2509(85)80116-0
  • [18] Ö. Baysal, M.Sc. Thesis, Gazi University, 2007
  • [19] ANSYS FLUENT 14 User Guide, Fluent Inc., USA 2013 http://ansys.fem.ir/ansys_fluent_tutorial.pdf
  • [20] F. Kumaş, M.Sc. Thesis, Dumlupınar University, Kütahya 2009
  • [21] B. Gurel, O. Ipek, M. Kan, Acta. Phys. Pol. A 128, B-43 (2015), doi: 10.12693/APhysPolA.128.B-43
  • [22] P. Warzecha, A. Boguslawski, Energy 66, 732 (2014), doi: 10.1016/j.energy.2013.12.015
  • [23] R. Jovanovic, A. Milewska, B. Swiatkowski, A. Goanta, H. Spliethoff, Int. J. Heat Mass Transf. 54, 921 (2011), doi: 10.1016/j.ijheatmasstransfer.2010.10.011
  • [24] R. Backreedy, L. Fletcher, L. Ma, M. Pourkashanian, A. Williams, Combust. Sci. Technol. 178, 763 (2006), doi: 10.1080/00102200500248532
  • [25] E.H. Chui, G.D. Raithby, Num. Heat Transf. Part B 23, 269 (1993), doi: 10.1080/10407799308914901
  • [26] G.D. Raithby, E.H. Chui, J. Heat Transfer 112, 415 (1990), doi: 10.1115/1.2910394
  • [27] J.B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, Singapore 1988, p. 336
  • [28] Y. Chang, K. Wu, Y. Chen, C. Chen, Energy Fuels 29, 3476 (2015), doi: 10.1021/acs.energyfuels.5b00233
  • [29] S. Belosevic, I. Tomanovic, V. Beljanski, D. Tucakovic, T. Zivanovic, Appl. Therm. Eng. 74, 102 (2015), doi: 10.1016/j.applthermaleng.2013.11.019
  • [30] G.G. De Soete, Proc. Combust. Inst. 15, 1093 (1975), doi: 10.1016/S0082-0784(75)80374-2
  • [31] A.E. Atımtay, H. Olgun, U. Kayahan, A. Ünlü, B. Engin, M. Varol, M. Çömlekçioğlu, B. Kamalı, H. Atakül, G. Bardakçıoğlu, Biores. Techn. 224 (C), 601 (2011), doi: 10.1016/j.biortech.2016.10.065
  • [32] M. Varol, A.T. Atimtay, H. . Olgun, Fuel 130, 1 (2014), doi: 10.1016/j.fuel.2014.04.002

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv132n3p041kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.