Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 209-213

Article title

Exergy Analysis of a Combined Power and Cooling Cycle

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Ammonia-water power cycles are important for efficient utilization of low temperature heat sources such as geothermal, solar, waste heat sources, etc. For some special conditions ammonia-water power cycle is an important and economical option. This paper presents an exergetic analysis of a combined power and cooling cycle that uses ammonia-water mixture as working fluid. Such cycles, use solar or geothermal energy or waste heat energy from a conventional power cycle. Ammonia-water power cycle can be used as independent cycles to provide power output and cooling. For a range (25-55 Bar) of boiler pressure the performance of the combined power and cooling cycle is investigated. The exergy of the boiler is very low compared to its energy. There is a boiling process and a heat transfer process at low temperature, both of which destruct the energy given to the boiler, so that the energy efficiency is low; however the exergy efficiency is higher than the energy efficiency. Increasing the turbine inlet pressure decreases the energy and exergy efficiencies.

Keywords

EN

Contributors

author
  • Department of Mechanical Engineering, Bayburt University, 69000 Bayburt

References

  • [1] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, Renew. Sust. Energ. Rev. 21, 728 (2013), doi: 10.1016/j.rser.2012.12.068
  • [2] H. Cho, A.D. Smith, P. Mago, Appl. Energ. 136, 168 (2014), doi: 10.1016/j.apenergy.2014.08.107
  • [3] A.I. Kalina, J. Eng. Gas Turb. Power 106, 732 (1984)
  • [4] V. Zare, S.M.S. Mahmoudi, M. Yari, Energy 61, 397 (2013), doi: 10.1016/j.energy.2013.09.038
  • [5] V. Zare, S.M.S. Mahmoudi, M. Yari, Appl. Therm. Eng. 48, 176 (2012), doi: 10.1016/j.applthermaleng.2012.05.009
  • [6] C. Dejfors, E. Thorin, G. Svedberg, Energ. Convers. Manage. 39, 1675 (1998), doi: 10.1016/S0196-8904(98)00087-9
  • [7] J. Wang, Z. Yan, M. Wang, Y. Dai, Energy 50, 513 (2013), doi: 10.1016/j.energy.2012.11.034
  • [8] J. Wang, J. Wang, P. Zhao, Y. Dai, Energy 117, 335 (2016), doi: 10.1016/j.enconman.2016.03.019
  • [9] M. Jonsson, J. Yan, Energy 26, 31 (2001), doi: 10.1016/S0360-5442(00)00043-8
  • [10] F. Xu, D.Y. Goswami, S.S. Bhagwat, Energy 25, 233 (2000), doi: 10.1016/S0360-5442(99)00071-7
  • [11] R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Energy 35, 4649 (2010), doi: 10.1016/j.energy.2010.09.042
  • [12] F. Xu, Ph.D. Thesis, University of Florida, 1997
  • [13] R. Tillner-Roth, D.G. Friend, J. Phys. Chem. Ref. Data 27, 63 (1998), doi: 10.1063/1.556015
  • [14] G.S. Alamdari, IJE Trans. B: Applications 20, 97 (2007)
  • [15] G.S. Alamdari, IJE Trans. A: Basics 20, 95 (2007)
  • [16] D. Sun, Appl. Therm. Eng. 17, 211 (1997), doi: 10.1016/S1359-4311(96)00041-5
  • [17] K. Annamalai, I.K. Puri, Advanced thermodynamics engineering, CRC Press LLC, 2002
  • [18] I. Dincer, M.A. Rosen, Exergy, energy, environment and sustainable development, 1st ed., Elsevier Ltd., 2007

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n1054kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.