Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 428-433

Article title

Nitrogen Source, an Important Determinant of Fatty Acid Accumulation and Profile in Scenedesmus obliquus

Content

Title variants

Languages of publication

EN

Abstracts

EN
The potential of algae-based fuel technologies for manufacturing renewable biofuels has been attracting interest from the scientific community. Biomass productivity and cellular lipid content are important parameters affecting the feasibility of using algae oil for biodiesel production. This study compares utilization of NaNO₃, NH₄Cl and urea as different nitrogen sources in terms of their effects on biomass productivity, fatty acid profile and accumulation in Scenedesmus obliquus. Cellular lipid accumulation was analyzed by gravimetric, fluorometric, and flow-cytometric methods, besides collecting spectrophotometric data for biomass productivity analysis. In addition, fatty acid profiles were compared by using gas chromatography-mass spectrometry. The alga can utilize all tested nitrogen sources successfully however growth rates demonstrate differences. Gravimetric lipid content analysis showed approximately a ≈1.5-fold increase in total lipid accumulation under NH₄Cl regime when compared to that of NaNO₃ and a ≈ 2-fold increase when compared to that of urea at the end of ten days cultivation course. Fatty acid profiles under different nitrogen regimes present variations especially under NH₄Cl regime. Moreover, all lipid extracts mostly consist of saturated, straight- and branched-chain hydrocarbons of different chain lengths ranging from C16-C20 which grant a suitable profile for biodiesel production. Scenedesmus obliquus is a suitable species for biodiesel production. The results obtained from this study provide a better understanding of cultivation characteristics of this important species and support potential, future biodiesel production.

Keywords

EN

Contributors

  • Üsküdar University, Faculty of Engineering and Natural Sciences, Bioengineering Dept., Istanbul, Turkey
author
  • Üsküdar University, Vocational School of Health Services, Radiotherapy Dept., Istanbul, Turkey
author
  • Sabanci University, Faculty of Engineering and Natural Sciences, Dept. of Biological Sciences and Bioengineering, Istanbul, Turkey

References

  • [1] Y. Chisti, Biotechnol. Adv. 25, 294 (2007), doi: 10.1016/j.biotechadv.2007.02.001
  • [2] B.J. Krohn, C.V. McNeff, B. Yan, D. Nowlan, Biores. Technol. 102, 94 (2011), doi: 10.1016/j.biortech.2010.05.035
  • [3] A. Singh, P.S. Nigam, J.D. Murphy, Biores. Technol. 102, 10 (2011), doi: 10.1016/j.biortech.2010.06.032
  • [4] P. Metzger, C. Largeau, Appl. Microbiol. Biotechnol. 66, 486 (2005), doi: 10.1007/s00253-004-1779-z
  • [5] S.Y. Chiu, C.Y. Kao, M.S. Tsai, S.C. Ong, C.Y. Chen, C.S. Lin, Biores. Technol. 100, 833 (2009), doi: 10.1016/j.biortech.2008.06.061
  • [6] W. Chen, C. Zhang, L. Song, M. Sommerfeld, Q. Hu, J. Microbiol. Meth. 77, 41 (2009), doi: 10.1016/j.mimet.2009.01.001
  • [7] M.C. Damiani, C.A. Popovich, D. Constenla, P.I. Leonardi, Biores. Technol. 101, 3801 (2010), doi: 10.1016/j.biortech.2009.12.136
  • [8] Z.Y. Liu, G.C. Wang, B.C. Zhou, Biores. Technol. 99, 4717 (2008), doi: 10.1007/s10529-009-9975-7
  • [9] Y. Li, M. Horsman, B. Wang, N. Wu, C.Q. Lan, Appl. Microbiol. Biotechnol. 81, 629 (2008), doi: 10.1007/s00253-008-1681-1
  • [10] S.H. Ho, W.M. Chen, J.S. Chang, Biores. Technol. 101, 8725 (2010), doi: 10.1016/j.biortech.2010.06
  • [11] S. Mandal, N. Mallick, Appl. Microbiol. Biotechnol. 84, 281 (2009), doi: 10.1007/s00253-009-1935-6
  • [12] M.M. Bradford, Anal. Biochem. 72, 248 (1976), doi: 10.1016/0003-2697(76)90527-3
  • [13] H.K. Lichtenthaler, Meth. Enzymol. 148, 350 (1987) ., doi: 10.1016/0076-6879(87)48036-1
  • [14] Q. Lin, J. Lin, Biores. Technol. 102, 1615 (2011), doi: 10.1016/j.biortech.2010.09.008
  • [15] C.H. Hsieh, W.T. Wu, Biores. Technol. 100, 3921 (2009), doi: 10.1016/j.biortech.2009.03.019
  • [16] L. Xin, H.Y. Hu, G. Ke, Y.X. Sun, Biores. Technol. 101, 5494 (2010), doi: 10.1016/j.biortech.2010.02.016
  • [17] M. Romek, B. Gajda, E. Krzysztofowicz, M. Kepczynski, Z. Smorag, Theriogenology 75, 42 (2011), doi: 10.1016/j.theriogenology.2010.06.040
  • [18] M. Siaut, S. Cuine, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylides, Y. Li-Beisson, G. Peltier, BMC Biotechnology 11, 7 (2011), doi: 10.1186/1472-6750-11-7
  • [19] T.L. da Silva, A. Reis, E. Medeiros, A.C. Oliveira, L. Gouveia, Appl. Biochem. Biotechnol. 159, 568 (2009), doi: 10.1007/s12010-008-8443-5
  • [20] M. Chen, H. Tang, H. Ma, T.C. Holland, K.Y. Ng, S.O. Salley, Biores. Technol. 102, 1649 (2011), doi: 10.1016/j.biortech.2010.09.062
  • [21] A. de la Jara, H. Mendoza, A. Martel, C. Molina, L. Nordströn, V. de la Rosa, R. Díaz, J. Appl. Phycol. 15, 433 (2003), doi: 10.1023/A:1026007902078
  • [22] L.M. Colla, T.W. Bertolin, J.A.V. Costa, Z. Naturforsch. C J. Biosci. 59, 55 (2004), doi: 10.1515/znc-2004-1-212
  • [23] T. Ietswaart, P.J. Schneider, R.A. Prins, Appl. Environm. Microbiol. 60, 1554 (1994)
  • [24] C.G. Liu, X.C. Jin, L. Sun, H.W. Sun, L. Zhu, Y. Yu, S.G. Dai, Y.Y. Zhuang, Huan Jing Ke Xue 27, 101 (2006)
  • [25] L. Gouveia, A.C. Oliveira, J. Indian Microbiol. Biotechnol. 36, 269 (2009), doi: 10.1007/s10295-008-0495-6

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n1114kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.