Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 506-509

Article title

Numerical Simulations of Glide Dislocations in Persistent Slip Band

Content

Title variants

Languages of publication

EN

Abstracts

EN
For the purpose of estimation of possible inaccuracy in standard discrete dislocation dynamics simulations, we study the motion of interacting dislocations in two regimes: the standard stress control and the total strain control. For demonstration of the difference, we consider two dislocations of opposite signs, gliding in parallel slip planes in a channel of a persistent slip band. Exposed to the applied stress, the dislocations move, bow out, and form a dipole. We investigate the passing stress needed for the dislocations to escape each from other, considering the stress controlled regime and the total strain controlled regime. The motion is described by the mean curvature flow and treated by means of the direct (parametric) method. The results of numerical experiments indicate that the stress control and the total strain control provide upper and lower estimate of the passing stress, respectively, and that these two estimates differ by approximately 10%.

Keywords

EN

Contributors

author
  • Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic
author
  • Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic
  • Department of Physics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, Prague, Czech Republic
author
  • Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic

References

  • [1] B. Devincre, Solid State Commun. 93, 875 (1995), doi: 10.1016/0038-1098(94)00894-9
  • [2] N. Ghoniem, L. Sun, Phys. Rev. B 60, 128 (1999), doi: 10.1103/PhysRevB.60.128
  • [3] A. Vattré, B. Devincre, F. Feyel, R. Gatti, S. Groh, O. Jamond, A. Roos, J. Mech. Phys. Solids 63, 491 (2014), doi: 10.1016/j.jmps.2013.07.003
  • [4] J. Křišt'an, J. Kratochvíl, V. Minárik, M. Beneš, Modell. Simul. Mater. Sci. Eng. 17, 045009 (2009), doi: 10.1088/0965-0393/17/4/045009
  • [5] P. Pauš, M. Beneš, J. Kratochvíl, Acta Mater. 61, 7917 (2013), doi: 10.1016/j.actamat.2013.09.032
  • [6] M. Beneš, J. Kratochvíl, J. Křišt'an, V. Minárik, P. Pauš, Eur. Phys. J. ST 177, 177 (2009), doi: 10.1140/epjst/e2009-01174-7
  • [7] P. Pauš, M. Beneš, Kybernetika 45, 591 (2009)
  • [8] M. Kolář, M. Beneš, D. Ševčovič, J. Kratochvíl, IAENG Int. J. Appl. Math. 45, 198 (2015) http://iaeng.org/IJAM/issues_v45/issue_3/IJAM_45_3_05.pdf
  • [9] D. Hull, D. Bacon, Introduction to Dislocations, Butterworth-Heinemann, 2011, doi: 10.1016/S1369-7021(11)70217-6
  • [10] M. Peach, J.S. Koehler, Phys. Rev. 80, 436 (1950), doi: 10.1103/PhysRev.80.436
  • [11] J. Křišt'an, J. Kratochvíl, Philos. Mag. 87, 4593 (2007), doi: 10.1080/14786430701576324
  • [12] V. Minárik, M. Beneš, J. Kratochvíl, J. Appl. Phys. 107, 061802 (2010), doi: 10.1063/1.3340518
  • [13] D. Ševčovič, S. Yazaki, Jpn. J. Ind. Appl. Math. 28, 413 (2011), doi: 10.1007/s13160-011-0046-9
  • [14] H. Mughrabi, F. Pschenitzka, Philos. Mag. 85, 3029 (2005), doi: 10.1080/14786430500079975

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n408kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.