Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 779-782

Article title

Phase Transformations in Ti-15Mo Investigated by in situ Electrical Resistance

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study phase transformations in metastable beta Ti-15Mo alloy were investigated by an in situ electrical resistance measurement in a wide range of temperatures from -196°C to 850°C. Different temperature ranges of the evolution of electrical resistance were correlated with underlying phase transformations. In the low temperature range, stage I (from -196°C to 220°C) the decrease of electrical resistance with increasing temperature is caused by the dissolution of ω_{ath} (formed during quenching by athermal shuffle transformation) which is accompanied by the relaxation of lattice strain, while the diffusional assisted growth of ω_{iso} in the range from 220°C to 380°C (stage II) is the main mechanism causing the increase of resistance. Another decrease of the resistance in the range from 380°C to 550°C (stage III) is explained by the dissolution or transformation of ω_{iso}. The increase of resistance above 550°C (stage IV) is related to the growth of α-phase particles. The fully reversible character of ω_{ath} growth and dissolution during heating and cooling in the stage I up to 100°C was confirmed by temperature cycling during repeated in situ resistance runs from RT. Pre-ageing of samples at 300°C promotes the formation of ω_{iso} particles. Subsequently, ω_{ath} particles are not created, which is fully consistent with electrical resistance measurements. The presence of ω_{ath} and the orientation relationship between ω and β were identified by the electron diffraction.

Keywords

EN

Year

Volume

128

Issue

4

Pages

779-782

Physical description

Dates

published
2015-10

Contributors

author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic
author
  • Department of Physics of Materials, Charles University in Prague, Prague, Czech Republic

References

  • [1] C. Leyens, M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, Wiley-VCH, Weinheim 2003, doi: 10.1002/3527602119
  • [2] J.R.S. Martins Jr., R.A. Nogueira, R.O. de Araújo, T.A.G. Donato, V.E. Arana-Chavez, A.P.R.A. Claro, J.C.S. Moraes, M.A.R. Buzalaf, C.R. Grandini, Mater. Res. 14, 107 (2011), doi: 10.1590/S1516-14392011005000013
  • [3] S. Banerjee, U.M. Naik, Acta Mater. 44, 3667 (1996), doi: 10.1016/1359-6454(96)00012-2
  • [4] S. Nag, R. Banerjee, H.L. Fraser, Mater. Sci. Eng. C 25, 357 (2005), doi: 10.1016/j.msec.2004.12.013
  • [5] G. Lütjering, J.C. Williams, Titanium, Springer, 2003, doi: 10.1007/978-3-540-71398-2
  • [6] D. de Fontaine, N.E. Paton, J.C. Williams, Acta Metall. 19, 1153 (1971), doi: 10.1016/0001-6160(71)90047-2
  • [7] H.P. Ng, A. Devaraj, S. Nag, C.J. Bettles, M. Gibson, H.L. Fraser, B.C. Muddle, R. Banerjee, Acta Mater. 59, 2981 (2011), doi: 10.1016/j.actamat.2011.01.038
  • [8] A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, H.L. Fraser, Acta Mater. 60, 596 (2012), doi: 10.1016/j.actamat.2011.10.008
  • [9] F. Prima, P. Vermaut, I. Thibon, D. Ansel, J. Debuigne, T. Gloriant, J. Metastable Nanocryst. Mater. 13, 307 (2002), doi: 10.4028/www.scientific.net/JMNM.13.307
  • [10] F. Prima, I. Thibon, D. Ansel, J. Debuigne, T. Gloriant, Mater. Trans. JIM 41, 1092 (2000), doi: 10.2320/matertrans1989.41.1092
  • [11] F. Prima, P. Vermaut, G. Texier, D. Ansel, T. Gloriant, Scr. Mater. 54, 645 (2006), doi: 10.1016/j.scriptamat.2005.10.024
  • [12] T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, J.L. Soubeyroux, Scr. Mater. 58, 271 (2008), doi: 10.1016/j.scriptamat.2007.10.007
  • [13] F. Sun, F. Prima, T. Gloriant, Mater. Sci. Eng. A 527, 4262 (2010), doi: 10.1016/j.msea.2010.03.044
  • [14] M. Hajek, J. Vesely, M. Cieslar, Mater. Sci. Eng. A 462, 339 (2005), doi: 10.1016/j.msea.2006.01.175
  • [15] J.M. Silcock, M.H. Davies, K. Hardy, The Mechanisms of Phase Transformations in Metals, Vol. 18, Institute of Metals Monograph, 1955, p. 93
  • [16] P.L. Rossiter, The Electrical Resistivity of Metals and Alloys, Cambridge Univ. Press, 1991, doi: 10.1017/CBO9780511600289
  • [17] A. Devaraj, R.E.A. Williams, S. Nag, R. Srinivasan, H.L. Fraser, R. Banerjee, Scr. Mater. 61, 701 (2009), doi: 10.1016/j.scriptamat.2009.06.006
  • [18] S. Banerjee, P. Mukhopadhyay, Phase Transformations Examples from Titanium and Zirconium Alloys, Elsevier, 2007, doi: 10.1016/s1470-1804(07)80052-6 Phase

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n475kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.