Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 1A | A-46-A-49

Article title

An Application of Fractional Brownian Motion to Vessel Identification Based on its Sound Spectrum

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper deals with the problem of vessel identification. The presented method is based on fractional Brownian analysis of vessel power spectrum. The measurements for three vessels were carried out with the use of a mobile measuring module in the Gulf of Gdansk; next, the information obtained from sound spectra was identified. Two classifiers connected with fractional Brownian motion were used: the first-order increments and the standard deviation. Finally, classification decision was made using the Mahalanobis distance. Numerical experiments were performed using MATLAB.

Keywords

EN

Year

Volume

128

Issue

1A

Pages

A-46-A-49

Physical description

Dates

published
2015-07

Contributors

author
  • Cracow University of Technology, Institute of Mathematics, Warszawska 24, 31-155 Krakow, Poland
author
  • Polish Naval Academy, Śmigowicza 69, 81-103 Gdynia, Poland
author
  • Polish Naval Academy, Śmigowicza 69, 81-103 Gdynia, Poland
author
  • AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

References

  • [1] G.B. Yang, L.G. Lu, D.Z. Gao, Y. Jiang, H.N. Liu, Arch. Acoust. 40, 11 (2015), doi: 10.1515/aoa-2015-0002
  • [2] A. Ozga, Arch. Acoust., 4, 645 (2014), doi: 10.2478/aoa-2014-0070
  • [3] S. Yang, Z. Li, X. Wang, J. Acoust. Soc. Am. 112, 172 (2002), doi: 10.1121/1.1487840
  • [4] A. Żak, WSEAS Transactions on Signal Processing 4, 137 (2008)
  • [5] S.J. Malinowski, I. Gloza, Acta Acust. united Ac. 88, 718 (2002)
  • [6] I. Gloza, R. Józwiak, K. Buszman, Hydroacoustics 17, 63 (2014)
  • [7] E. Kozaczka, G. Grelowska, S. Kozaczka, W. Szymczak, Arch. Acoust. 38, 99 (2013), doi: 10.2478/aoa-2013-0012
  • [8] D. Zhao, Zh. Huand, Sh. Su, T. Li, Arch. Acoust, 38, 105 (2013), doi: 10.2478/aoa-2013-0013
  • [9] G. Grelowska, E. Kozaczka, S. Kozaczka, W. Szymczak, Arch. Acoust. 38, 351 (2013), doi: 10.2478/aoa-2013-0041
  • [10] G. Grelowska, E. Kozaczka, Arch. Acoust. 4, 439 (2014), doi: 10.2478/aoa-2014-0048
  • [11] J. Marszal, Arch. Acoust., 1, 103 (2014), doi: 10.2478/aoa-2014-0011
  • [12] R.J. Urick, Principles of Underwater Sound, 3rd ed, McGraw-Hill, New York 1983
  • [13] M.S. Keshner, Proc. IEEE 70, 212 (1982), doi: 10.1109/PROC.1982.12282
  • [14] B. Mandelbrot, J. Van Ness, SIAM Rev. 10, 422 (1968)
  • [15] T. Sottinen, J Theor. Probab. 17, 309 (2004), doi: 10.1023/B:JOTP.0000020696.99064.5d
  • [16] A.B. Dieker, M. Mandjes, Informational Sciences Probability in the Engineering and Informational Sciences 17, 417 (2003), doi: 10.1017/S0269964803173081
  • [17] H.E. Hurst, R.P. Black, Y.M. Sinaika, Long Term Storage in Reservoirs. An Experimental Study, Constable, London, 1965

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n1a08kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.