Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1727-1731

Article title

Hydrothermally Synthesized CuO Powders for Photocatalytic Inactivation of Bacteria

Content

Title variants

Languages of publication

EN

Abstracts

EN
Various morphologies of monoclinic CuO powders were synthesized by hydrothermal treatment of copper nitrate, copper acetate or copper sulfate. The synthesized samples were characterized by scanning electron microscopy, X-ray diffractometry, the Fourier transform infrared spectroscopy, and diffuse reflectance spectrophotometry. Antibacterial activity of the samples was studied against Escherichia coli bacteria in dark and under visible light irradiation. Although the different precursors yielded the same band gap energies ( ≈1.6 eV) for the synthesized CuO samples, they resulted in various morphologies (hierarchy of stabilized micro/nanostructures), specific surface areas, concentrations of OH-surface groups, and visible light photocatalytic performances. The CuO nanorods synthesized from nitrate hydrothermal bath not only exhibited a considerable effective surface area, but also showed the highest concentration of absorbed OH-groups and subsequently, the strongest (photo)catalytic antibacterial properties ( ≈37 and 94% inactivation of the bacteria in dark and under visible light irradiation, respectively).

Keywords

EN

Contributors

author
  • Malek-Ashtar University of Technology, Tehran, Iran
author
  • Malek-Ashtar University of Technology, Tehran, Iran
author
  • Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran

References

  • [1] X. Wu, G. Shi, S. Wang, P. Wu, Eur. J. Inorg. Chem. 2005, 4775 (2005), doi: 10.1002/ejic.200500413
  • [2] J.B. Liang, N. Kishi, T. Soga, T. Jimbo, Appl. Surf. Sci. 257, 62 (2010), doi: 10.1016/j.apsusc.2010.06.034
  • [3] O. Akhavan, J. Phys. D Appl. Phys. 41, 235407 (2008), doi: 10.1088/0022-3727/41/23/235407
  • [4] Y. Liu, Y. Chu, Y. Zhuo, M. Li, L. Li, L. Dong, Cryst. Growth Des. 7, 467 (2007), doi: 10.1021/cg060480r
  • [5] Y. Wang, D. Meng, X. Liu, F. Li, Cryst. Res. Technol. 44, 1277 (2009), doi: 10.1002/crat.200900373
  • [6] J. Liu, X. Huang, Y. Li, K.M. Sulieman, X. He, F. Sun, J. Mater. Chem. 16, 4427 (2006), doi: 10.1039/B611691D
  • [7] R.P. Wijesundera, Semicond. Sci. Technol. 25, 045015 (2010), doi: 10.1088/0268-1242/25/4/045015
  • [8] T.J. Richardson, J.L. Slack, M.D. Rubin, Electrochim. Acta 46, 2281 (2001), doi: 10.1016/S0013-4686(01)00397-8
  • [9] O. Akhavan, H. Tohidi, A.Z. Moshfegh, Thin Solid Films 517, 6700 (2009), doi: 10.1016/j.tsf.2009.05.016
  • [10] M. Zhou, Y. Gao, B. Wang, Z. Rozynek, J.O. Fossum, Eur. J. Inorg. Chem. 2010, 729 (2010), doi: 10.1002/ejic.200900683
  • [11] Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009), doi: 10.1021/jp9083647
  • [12] M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11 (2008), doi: 10.1016/j.catcom.2008.07.022
  • [13] A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas, K.V. Rao, J. Appl. Phys. 92, 2172 (2002), doi: 10.1063/1.1490154
  • [14] X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu, H. Liu, B. Fang, J. Phys. Chem. C 112, 16845 (2008), doi: 10.1021/jp806985k
  • [15] O. Akhavan, E. Ghaderi, J. Mater. Chem. 21, 12935 (2011), doi: 10.1039/C1JM11813G
  • [16] Y.W. Zhu, T. Yu, F.C. Cheong, X.J. Xu, C.T. Lim, V.B.C. Tan, J.T.L. Thong, C.H. Sow, Nanotechnology 16, 88 (2005), doi: 10.1088/0957-4484/16/1/018
  • [17] Y. Liu, L. Zhong, Z. Peng, Y. Song, W. Chen, J. Mater. Sci. 45, 3791 (2010), doi: 10.1007/s10853-010-4433-4
  • [18] O. Akhavan, E. Ghaderi, Surf. Coat. Technol. 205, 219 (2010), doi: 10.1016/j.surfcoat.2010.06.036
  • [19] F. Gao, H. Pang, S. Xu, Q. Lu, Chem. Commun. 24, 3571 (2009), doi: 10.1039/B904801D
  • [20] M. Paschoalino, N.C. Guedes, W. Jardim, E. Mielczarski, J.A. Mielczarski, P. Bowen, J. Kiwi, J. Photochem. Photobiol. A Chem. 199, 105 (2008), doi: 10.1016/j.jphotochem.2008.05.010
  • [21] O. Akhavan, R. Azimirad, S. Safa, E. Hasani, J. Mater. Chem. 21, 9634 (2011), doi: 10.1039/C0JM04364H
  • [22] R. Azimirad, S. Safa, Synth. React. Inorg. Met.-Org. Chem. 44, 798 (2014), doi: 10.1080/15533174.2013.790440
  • [23] I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, A. Gedanken, Surf. Coat. Technol. 204, 54 (2009), doi: 10.1016/j.surfcoat.2009.06.028
  • [24] O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113, 20214 (2009), doi: 10.1021/jp906325q
  • [25] G. Fu, P.S. Vary, C.T. Lin, J. Phys. Chem. B 109, 8889 (2005), doi: 10.1021/jp0502196
  • [26] O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47, 3280 (2009), doi: 10.1016/j.carbon.2009.07.046
  • [27] O. Akhavan, J. Coll. Interface Sci. 336, 117 (2009), doi: 10.1016/j.jcis.2009.03.018
  • [28] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008), doi: 10.1111/j.1574-6968.2007.01012.
  • [29] O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, J. Phys. D Appl. Phys. 42, 225305 (2009), doi: 10.1088/0022-3727/42/22/225305
  • [30] O. Akhavan, M. Choobtashani, E. Ghaderi, J. Phys. Chem. C 116, 9653 (2012), doi: 10.1021/jp301707m
  • [31] F.C.S. Paschoalino, M.P. Paschoalino, E. Jordăo, W.D. Jardim, Open J. Phys. Chem. 2, 135 (2012), doi: 10.4236/ojpc.2012.23018
  • [32] L.J. Xie, W. Chu, J.H. Sun, P. Wu, D.G. Tong, J. Mater. Sci. 46, 2179 (2011), doi: 10.1007/s10853-010-5055-6
  • [33] H. Pang, F. Gao, Q. Lu, Chem. Commun. 9, 1076 (2009), doi: 10.1039/B816670F
  • [34] M.S. Hasan, T. Amna, H.Y. Kim, M.S. Khil, Composites Part B 45, 904 (2013), doi: 10.1016/j.compositesb.2012.09.009
  • [35] S. Wang, H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang, J. Solid State Chem. 182, 1088 (2009), doi: 10.1016/j.jssc.2009.01.042
  • [36] J. Cho, Solid State Ion. 138, 267 (2001), doi: 10.1016/S0167-2738(00)00787-6
  • [37] L. Vayssieres, Adv. Mater. 15, 464 (2003), doi: 10.1002/adma.200390108
  • [38] S. Cho, S. Jung, K.H. Lee, J. Phys. Chem. C 112, 12769 (2008), doi: 10.1021/jp803783s
  • [39] M.A. Abbasi, Y. Khan, S. Hussain, O. Nur, M. Willander, Vacuum 86, 1998 (2012), doi: 10.1016/j.vacuum.2012.05.020
  • [40] J.S. Xue, J.R. Dahn, J. Electrochem. Soc. 142, 3668 (1995), doi: 10.1149/1.2048397
  • [41] C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei,Cryst. Growth Des. 8, 3549 (2008), doi: 10.1021/cg7011843
  • [42] E. Kim, Z. Jiang, K. No, Jpn. J. Appl. Phys. 39, 4820 (2000), doi: 10.1143/JJAP.39.4820
  • [43] O. Akhavan, E. Ghaderi, ACS Nano 4, 5731 (2010), doi: 10.1021/nn101390x
  • [44] S. Kang, M. Herzberg, D.F. Rodrigues, M. Elimelech, Langmuir 24, 6409 (2008), doi: 10.1021/la800951v
  • [45] J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Acta Biomater. 4, 707 (2008), doi: 10.1016/j.actbio.2007.11.006

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n629kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.