Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 3 | 854-858

Article title

Optical and Scintillation Properties of Bi_{4}(Ge_{x}S_{1-x})_{3}O_{12} Single Crystal

Content

Title variants

Languages of publication

EN

Abstracts

EN
The solid solution crystals, Bi_{4}(Ge_{x}Si_{1-x})_{3}O_{12} (BGSO) with x=0, 0.05, and 0.15, have been grown by the modified vertical Bridgman method. The as-grown crystals show 80% of transmittance with an absorption edge of 285 nm. The relative light yields of BGSO crystals are found to be 7.2%, 6.3%, and 4.2% of CsI(Tl) crystal for x=0, 0.05, and 0.15, respectively. The energy resolutions of these crystals are 18.9%, 21.3%, and 24.7%, respectively, with PMT for 662 keV gamma rays at room temperature when exposed to ^{137}Cs γ -ray. The scintillation performance of BGSO crystals clearly deteriorates with the increase of Ge content. However, the appropriate number of germanium ions doped to BSO crystal can improve its crystallization behavior and effectively restrain component segregation. It is expected that large size crystals of BGSO will be grown and applied to the dual readout calorimeter in the nearest future.

Keywords

Contributors

author
  • School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
  • Department of Fundamental Science, Beifang University of Nationalities, Yinchuan 750021, P.R. China
author
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
  • School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China
author
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
  • School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China
author
  • School of Materials Science and Engineering, Tongji University, Shanghai 201804, P.R. China

References

  • [1] C.F. He, S.J. Fan, J.Y. Liao, Q.S. Shen, D.Z. Shen, T.G. Zhou, Prog. Cryst. Growth Charact. Mater. 11, 253 (1985), doi: 10.1016/0146-3535(85)90007-3
  • [2] M. Ishii, M. Kobarashi, Prog. Cryst. Growth Charact. Mater. 23, 245.(1992), doi: 10.1016/0960-8974(92)90025-L
  • [3] J.Y. Xu, C.Z. Ye, Y.Q. Chu, J.Y. Liao, Z.W. Ge, S.J. Fan, J. Synth. Cryst. 36, 957 (2007), doi: 10.1016/0168-9002(95)01279-6
  • [4] M. Kobayashi, M. Ishii, K. Harada, I. Yamaga, Nucl. Instrum. Methods Phys. Res. A 372, 45 (1996), doi: 10.1016/0168-9002(95)01279-6
  • [5] J.Y. Xu, H. Wang, Q.B. He, H. Shen, H. Shimizu, W.D. Xiang, J. Chin. Ceramic Soc. 37, 295 (2009)
  • [6] M.J. Weber, R.R. Monchamp, J. Appl. Phys. 44, 5495 (1973), doi: 10.1063/1.1662183
  • [7] O.H. Nestor, C.Y. Huang, IEEE Trans. Nucl. Sci. 22, 68 (1975), doi: 10.1109/TNS.1975.4327617
  • [8] Z.H. Cho, M. Farukhi, J. Nucl. Med. 18, 840 (1977)
  • [9] S.E. Derenzo, IEEE Trans. Nucl. Sci. 28, 131 (1981), doi: 10.1109/TNS.1981.4331154
  • [10] Y.K. Akimov, Phys. Part. Nucl. 25, 92 (1994)
  • [11] W. Drozdowski, A.J. Wojtowicz, S.M. Kaczmarek, M. Berkowski, Physica B Condens. Matter 405, 1647 (2010), doi: 10.1016/j.physb.2009.12.061
  • [12] M. Ishii, K. Harada, Y. Hirose, N. Senguttuvan, M. Kobayashi, I. Yamaga, H. Ueno, K. Miwa, S.J. Fan, Y.T. Fei, M. Nikl, X.Q. Feng, Opt. Mater. 19, 201 (2002), doi: 10.1016/S0925-3467(01)00220-8
  • [13] Y.T. Fei, S.J. Fan, R.Y. Sun, J.Y. Xu, M. Ishii, Prog. Cryst. Growth Charact. Mater. 40, 189 (2000), doi: 10.1016/S0960-8974(00)00004-8
  • [14] V. Vaithianathan, S. Kumaragurubaran, N. Senguttuvan, J. Cryst. Growth 235, 212 (2002), doi: 10.1016/S0022-0248(01)01725-0
  • [15] V. Vaithianathan, A. Claude, P. Santhanaraghavan, J. Cryst. Growth 273, 481 (2005), doi: 10.1016/j.jcrysgro.2004.09.052
  • [16] H. Jiang, H.J. Kim, G. Rooh, H. Park, S. Kim, J.K. Cheon, Nucl. Instrum. Methods Phys. Res. A 648, 73 (2011), doi: 10.1016/j.nima.2011.05.043
  • [17] Y. Zhang, J.Y. Xu, Q.B. He, B.L. Lu, J. Cryst. Growth 362, 121 (2013), doi: 10.1016/j.jcrysgro.2011.12.088
  • [18] J.Y. Xu, S.J. Fan, X.W. Xu, Mater. Sci. Eng. B 85, 50 (2001), doi: 10.1016/S0921-5107(01)00642-0
  • [19] R.Y. Zhu, http://www.slac.stanford.edu/econf/C0508141/proc/pres/ALCPG0705_TALK.PDF, August 18, 2005
  • [20] Hua Jiang, Gul Rooh, H.J. Kim, H. Park, Sunghwan Kim, Wansong Zhang, U. Fawad, J. Cryst. Growth 367, 73 (2013), doi: 10.1016/j.jcrysgro.2012.12.145
  • [21] Zhengye Xiong, Jiayue Xu, Yan Zhang, Zhijian Tan, Mater. Res. Innovat. 18, S2-294 (2014), doi: 10.1179/1432891714Z.000000000418

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n336kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.