Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 407-409

Article title

DFT Estimation of Exchange Coupling Constant of Cr₈ Molecular Ring using the Hybrid Functional B3LYP

Content

Title variants

Languages of publication

EN

Abstracts

EN
A study of electronic and magnetic properties of an octametallic chromium-based homonuclear molecule Cr₈F₈(CO₂-C(CH₃)₃)₁₆ is presented, using density functional theory (DFT) approach and linearized augmented plane wave (LAPW) method with Perdew, Burke and Ernzerhof (PBE) and Becke 3-term correlation (B3LYP) functionals. The exchange coupling parameters between transition metals ions are extracted, taking into account two different (ferro- and antiferromagnetic) spin configurations. The value J=3.1 meV found for the hybrid B3LYP functional improves significantly the one obtained for the PBE functional and gives an evidence for the superiority of the former in simulation of molecular nanomgnets. Moreover, the hybrid functional yields excellent spin density localisation, an enhancement of the HOMO-LUMO gaps and the value 2.81 μ_B of magnetic moment at the chromium centre in good agreement with experiment.

Keywords

Contributors

  • Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
  • Institute of Physics, University of Zielona Góra, Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
author
  • Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

References

  • [1] D. Gatteschi, R. Sessoli, J. Villain, Molecular nanomagnets, Oxford University Press, New York 2006, doi: 10.1093/acprof:oso/9780198567530.001.0001
  • [2] J. van Slageren, R. Sessoli, D. Gatteschi, A.A. Smith, M. Helliwell, R.E.P. Winpenny, A. Cornia, A.L. Barra, A.G.M. Jansen, E. Rentschler, G.A. Timco, Chem. Eur. J. 8, 277 (2002), doi: 10.1002/1521-3765(20020104)8:1<277::AID-CHEM277>3.0.CO;2-D
  • [3] T. Ślusarski, B. Brzostowski, D. Tomecka, G. Kamieniarz, J. Nanosci. Nanotechnol. 11, 9080 (2011), doi: 10.1166/jnn.2011.4300
  • [4] V. Bellini, A. Olivieri, F. Manghi, Phys. Rev. B 73, 184431 (2006), doi: 10.1103/PhysRevB.73.184431
  • [5] B. Brzostowski, R. Lemański, T. Ślusarski, D. Tomecka, G. Kamieniarz, J. Nanopart. Res. 15, 1528 (2013), doi: 10.1007/s11051-013-1528-2
  • [6] L.J. Noodleman, Chem. Phys. 74, 5737 (1981), doi: 10.1063/1.440939
  • [7] E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 20, 1391 (1999), doi: 10.1002/(SICI)1096-987X(199910)20:13<1391::AID-JCC6>3.0.CO;2-J
  • [8] P. Christian, G. Rajaraman, A. Harrison, J.J.W. McDouall, J.T. Rafterya, R.E.P. Winpenny, Dalton Trans. 10, 1511 (2004), doi: 10.1039/B404031G
  • [9] V. Bellini, M. Affronte, J. Phys. Chem. B 114, 14797 (2010), doi: 10.1021/jp107544z
  • [10] G. Kamieniarz, P. Kozłowski, M. Antkowiak, P. Sobczak, T. Ślusarski, D.M. Tomecka, A. Barasiński, B. Brzostowski, A. Drzewiński, A. Bieńko, J. Mroziński, Acta Phys. Pol. A. 121, 992 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p04.pdf
  • [11] T. Ślusarski, B. Brzostowski, D. Tomecka, G. Kamieniarz, Acta Phys. Pol. A. 118, 967 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z5p43.pdf
  • [12] V. Bellini, D.M. Tomecka, B. Brzostowski, M. Wojciechowski, F. Troiani, F. Manghi, M. Affronte, Lecture Notes in Computer Science 8385, 428 (2014), doi: 10.1007/978-3-642-55195-6_40
  • [13] D.M. Tomecka, V. Bellini, F. Troiani, F. Manghi, G. Kamieniarz, M. Affronte Phys. Rev. B 77, 224401 (2008), doi: 10.1103/PhysRevB.77.224401
  • [14] B. Brzostowski, T. Ślusarski, G. Kamieniarz, Acta Phys. Pol. A. 121, 1115 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p37.pdf
  • [15] B. Brzostowski, M. Wojciechowski, R. Lemański, G. Kamieniarz, G.A. Timco, F. Tuna, R.E.P. Winpenny, Acta Phys. Pol. A. 126, 270 (2014), doi: 10.12693/APhysPolA.126.270
  • [16] B. Brzostowski, M. Wojciechowski, G. Kamieniarz, Acta Phys. Pol. A. 126, 234 (2013), doi: 10.12693/APhysPolA.126.234
  • [17] O. K. Andersen, Phys. Rev. B 12, 3060 (1975), doi: 10.1103/PhysRevB.12.3060
  • [18] D.J. Singh, L. Nordström, Planewaves Pseudopotentials and the LAPW Method, Kluwer Academic, Boston 1994, doi: 10.1007/978-0-387-29684-5
  • [19] P. Blaha, K. Schwarz, G.H.K. Madsen, D. Kvasnicka, J. Luitz), WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Ed. K.-H.Schwarz, Techn. Universität Wien, Wien 1999
  • [20] E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Commun. 114, 15 (2000), doi: 10.1016/S0038-1098(99)00577-3
  • [21] G.K.H. Madsen, P. Blaha, K.-H. Schwarz, E. Sjöstedt, L. Nordström Phys. Rev. B 64, 195134 (2001), doi: 10.1103/PhysRevB.64.195134
  • [22] J.C. Slater, Phys. Rev. 51, 846 (1937), doi: 10.1103/PhysRev.51.846
  • [23] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [24] A.D. Becke, J. Chem. Phys. 98, 5648 (1993), doi: 10.1063/1.464913
  • [25] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988), doi: 10.1103/PhysRevB.37.785
  • [26] M.L. Baker, T. Guidi, S. Carretta, J. Ollivier, H. Mutka, H.U. Güdel, G.A. Timco, E.J.L. McInnes, G. Amoretti, R.E.P. Winpenny, P. Santini, Nature Physics 8, 906 (2012), doi: 10.1038/NPHYS2431
  • [27] M. Antkowiak, P. Kozłowski, G. Kamieniarz, G.A. Timco, F. Tuna, R.E.P. Winpenny, Phys. Rev. B 87, 184430 (2013), doi: 10.1103/PhysRevB.87.184430
  • [28] I. Rudra, Q. Wu, T. Van Voorhis, Inorg. Chem. 46, 10539 (2007), doi: 10.1021/ic700871f

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2079kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.