Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 192-197

Article title

Spin-wave Instability Theory for Ferromagnetic Nanostructures

Content

Title variants

Languages of publication

EN

Abstracts

EN
A microscopic, or Hamiltonian-based, theory is outlined for studying the spin-wave instability thresholds of the parametric processes occurring in ferromagnetic nanostructures under conditions of pumping with a microwave field. Most previous work has concentrated on spheres or films with dimensions of order several μm or more, with the theoretical interpretation being made in terms of macroscopic (or continuum) methods. At smaller length scales, as in ultrathin films and nanowires with thickness or lateral dimensions less than about 100 nm, the discreteness of the quantized spin waves and their spatial distributions become modified, making it more appropriate to employ a microscopic approach to the nonlinear dynamics with a lattice of effective spins interacting through the magnetic dipole-dipole and exchange interactions. Effects of microwave pumping (in either the parallel or perpendicular configuration) are incorporated in calculations for the instability thresholds of the quantized spin-wave bands in different nanostructures and materials.

Keywords

EN

Contributors

  • Department of Physics and Astronomy, University of Western Ontario London, Ontario N6A 3K7, Canada
author
  • Department of Physics and Astronomy, University of Western Ontario London, Ontario N6A 3K7, Canada
author
  • Department of Physics and Astronomy, University of Western Ontario London, Ontario N6A 3K7, Canada

References

  • [1] G.A. Melkov, Yu.V. Koblyanskiy, R.A. Slipets, A.V. Talalaevskij, A.N. Slavin, Phys. Rev. B 79, 134411 (2009), doi: 10.1103/PhysRevB.79.134411
  • [2] H. Ulrichs, V.E. Demidov, S.O. Demokritov, S. Urazhdin, Phys. Rev. B 84, 094401 (2011), doi: 10.1103/PhysRevB.84.094401
  • [3] M. Weiler, G. Woltersdorf, M. Althammer, H. Huebl, S.T.B. Goennenwein, in: Recent Advances in Magnetic Insulators - From Spintronics to Microwave Applications, Eds. M. Wu, A. Hoffmann, Elsevier, Amsterdam 2013, p. 123
  • [4] H. Suhl, J. Phys. Chem. Solids 1, 209 (1957), doi: 10.1016/0022-3697(57)90010-0
  • [5] E. Schlomann, J.J. Green, U. Milano, J. Appl. Phys. 31, S386 (1960), doi: 10.1063/1.1984759
  • [6] Nonlinear Phenomena and Chaos in Magnetic Materials, Ed. P. Wigen, World Scientific, Singapore 1994
  • [7] V. S. L'vov, Wave Turbulence under Parametric Excitation: Application to Magnets, Springer, Heidelberg 1994
  • [8] M.G. Cottam, A.N. Slavin, in: Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, Ed. M.G. Cottam, World Scientific, Singapore 1994, p. 1
  • [9] S.M. Rezende, A. Azevedo, F.M. de Aguiar, in: Linear and Nonlinear Spin Waves in Magnetic Films and Superlattices, Ed. M.G. Cottam, World Scientific, Singapore 1994, p. 335
  • [10] A.G. Gurevich, G.A. Melkov, Magnetization Oscillations and Waves, CRC Press, Boca Raton 1996
  • [11] D.D. Stancil, A. Prabhakar, Spin Waves: Theory and Applications, Springer, Heidelberg 2009
  • [12] D.N. Chartoryzhskii, B.A. Kalinikos, O.G. Vendik, Solid State Commun. 20, 985 (1976), doi: 10.1016/0038-1098(76)90489-0
  • [13] G. Wiese, P. Kabos, C.E. Patton, J. Appl. Phys. 74, 1218 (1993), doi: 10.1063/1.354924
  • [14] G. Wiese, P. Kabos, C.E. Patton, Phys. Rev. B 51, 15085 (1995), doi: 10.1103/PhysRevB.51.15085
  • [15] V.B. Cherepanov, A.N. Slavin, in: High Frequency Processes in Magnetic Materials, Eds. G. Srinivasan, A.N. Slavin, World Scientific, Singapore 1995, p. 250
  • [16] H.T. Nguyen, M.G. Cottam, Phys. Rev. B 89, 144424 (2014), doi: 10.1103/PhysRevB.89.144424
  • [17] R.N. Costa Filho, M.G. Cottam, G.A. Farias, Phys. Rev. B 62, 6545 (2000), doi: 10.1103/PhysRevB.62.6545
  • [18] H.T. Nguyen, M.G. Cottam, J. Phys. C Condens. Matter 23, 126004 (2011), doi: 10.1088/0953-8984/23/12/126004
  • [19] T.M. Nguyen, M.G. Cottam, Phys. Rev. B 71, 094406 (2005), doi: 10.1103/PhysRevB.71.094406
  • [20] H.T. Nguyen, T.M. Nguyen, M.G. Cottam, Phys. Rev. B 76, 134413 (2007), doi: 10.1103/PhysRevB.76.134413
  • [21] H.T. Nguyen, A. Akbari-Sharbaf, M.G. Cottam, Phys. Rev. B 83, 214423 (2011), doi: 10.1103/PhysRevB.76.134413
  • [22] H.T. Nguyen, M.G. Cottam, J. Phys. D Appl. Phys. 44, 315001 (2011), doi: 10.1088/0022-3727/44/31/315001
  • [23] T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940), doi: 10.1103/PhysRev.58.1098
  • [24] R.W. Damon, J.R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961), doi: 10.1016/0022-3697(61)90041-5
  • [25] C.T. Boone, J.A. Katine, J.R. Childress, V. Tiberkevich, A. Slavin, J. Zhu, X. Cheng, I.N. Krivorotov, Phys. Rev Lett. 103, 167601 (2009), doi: 10.1103/PhysRevLett.103.167601

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2008kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.