Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 362-364

Article title

Bonding Analysis of BiFeO₃ Substituted by Gd³⁺

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present results of first-principles calculations for Bi₅GdFe₆O₁₈ compound in idealized the rhombohedral R3c structure for a variety of magnetic ordering. Within DFT+U approach it is found that the insulating ground state with the G-type antiferromagnetic arrangement of Fe sublattice gives a minimal total energy for BiFeO₃ substituted by magnetically active Gd³⁺. The Bi₅GdFe₆O₁₈ compound has nonzero total magnetic moment, which arises from antiparallel spin moments on Fe sites and reduced spin moment on Gd. Chemical bonding of the studied compound is analyzed using partial density of states, electron localization function and charge density distribution.

Keywords

Contributors

  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland

References

  • [1] H. Béa, M. Bibes, S. Cherifi, F. Nolthing, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Deranlot, E. Jacquet, K. Bouzehouane, A. Barthélémy, Appl. Phys. Lett. 89, 242114 (2006), doi: 10.1063/1.2402204
  • [2] L.W. Martin, Y.-H. Chu, Q. Zhan, R. Ramesh, Shu-Jen Han, S.X. Wang, M. Warusawithana, D.G. Schlom, Appl. Phys. Lett. 91 172513 (2007), doi: 10.1063/1.2801695
  • [3] A.M. Kadomtseva, Yu.F. Popov, A.P. Pyatakov, G.P. Vorob'ev, A.K. Zvezdin, D. Viehland, Phase Transit. 79 1019 (2006), doi: 10.1080/01411590601067235
  • [4] P. Uniyal, K.L. Yadav, Mater. Lett. 62 2858 (2008), doi: 10.1016/j.matlet.2008.01.103
  • [5] V. Khomchenko, V. Shvartsman, P. Borisov, W. Kleemann, D. Kiselev, I. Bdikin, J. Vieira, A. Kholkin, Acta Mater. 57, 5137 (2009), doi: 10.1016/j.actamat.2009.07.013
  • [5a] V. Khomchenko, V. Shvartsman, P. Borisov, W. Kleemann, D. Kiselev, I. Bdikin, J. Vieira, A. Kholkin, Appl. Phys. Lett. 93 262905 (2008), doi: 10.1063/1.3058708
  • [6] G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996), doi: 10.1103/PhysRevB.54.11169
  • [7] G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999), doi: 10.1103/PhysRevB.59.1758
  • [8] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [9] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998), doi: 10.1103/PhysRevB.57.1505
  • [10] M. Pugaczowa-Michalska, J. Kaczkowski, A. Jezierski, Ferroelectrics 461, 85 (2014), doi: 10.1080/00150193.2014.889977
  • [11] T. Higuchi, Y.-S. Lui, P. Yao, P.-A. Glans, J. Guo, C. Chang, A. Wu, W. Sakamoto, N. Itoh, T. Shimura, T. Yogo, T. Hattori, Phys. Rev. B 78, 085106 (2008), doi: 10.1103/PhysRevB.78.085106
  • [12] A. Kokalj, Comput. Mater. Sci. 28, 155 (2003), doi: 10.1016/S0927-0256(03)00104-6
  • [13] P. Ravindran, R. Vidya, A. Kjekshus, H. Fjelvåg, O. Eriksson, Phys. Rev. B 74, 224412 (2006), doi: 10.1103/PhysRevB.74.224412
  • [14] A.D. Becke, K.E. Edgecombe, J. Phys. Chem. 92, 5397 (1990), doi: 10.1063/1.458517

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2064kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.