Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 284-286

Article title

Some Exact Results for the Zero-Bandwidth Extended Hubbard Model with Intersite Charge and Magnetic Interactions

Content

Title variants

Languages of publication

EN

Abstracts

EN
The extended Hubbard model in the zero-bandwidth limit is studied. The effective Hamiltonian consists of (i) on-site U interaction, (ii) intersite density-density interaction W, and (iii) Ising-like magnetic exchange interaction J between the nearest-neighbors. We present rigorous (and analytical) results obtained within the transfer-matrix method for 1D chain in two particular cases: (a) W=0 and n=1; (b) U → +∞ and n=1/2 (W ≠ 0, J ≠ 0). We obtain the exact formulae for the partition functions which enables to calculate thermodynamic properties such as entropy, specific heat (c), and double occupancy per site. In both cases the system exhibits an interesting temperature dependence of c involving a characteristic two-peak structure. There are no phase transitions at finite temperatures and the only transitions occur in the ground state.

Keywords

Contributors

author
  • Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
  • Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
  • Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland

References

  • [1] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990), doi: 10.1103/RevModPhys.62.113
  • [2] T. Goto, B. Lüthi, Adv. Phys. 52, 67 (2003), doi: 10.1080/0001873021000057114
  • [3] E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001), doi: 10.1016/S0370-1573(00)00121-6
  • [4] J. van den Brink, D.I. Khomskii, J. Phys. Condens. Matter 20, 434217 (2008), doi: 10.1088/0953-8984/20/43/434217
  • [5] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A 106, 709 (2004) http://przyrbwn.icm.edu.pl/APP/PDF/106/a106z521.pdf
  • [5a] W.R. Czart, S. Robaszkiewicz, Phys. Status Solidi B 243, 151 (2006), doi: 10.1002/pssb.200562502
  • [6] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A 109, 577 (2006) http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z421.pdf
  • [6a] W.R. Czart, S. Robaszkiewicz, Mater. Sci.-Poland 25, 485 (2007)
  • [7] K. Kapcia, Acta Phys. Pol. A 121, 733 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z4p104.pdf
  • [8] K. Kapcia, J. Supercond. Nov. Magn. 26, 2647 (2013), doi: 10.1007/s10948-013-2152-1
  • [9] K.J. Kapcia, Acta Phys. Pol. A 127, 204 (2015), doi: 10.12693/APhysPolA.127.204
  • [9a] K.J. Kapcia, J. Supercond. Novel Magn. in press (2015), doi: 10.1007/s10948-014-2906-4
  • [10] G.F. Newell, E.W. Montroll, Rev. Mod. Phys. 25, 353 (1953), doi: 10.1103/RevModPhys.25.353
  • [11] F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120 (2008), doi: 10.1103/PhysRevE.77.061120
  • [12] F. Mancini, E. Plekhanov, G. Sica, Cent. Eur. J. Phys. 10, 609 (2012), doi: 10.2478/s11534-012-0017-z
  • [13] F. Mancini, E. Plekhanov, G. Sica, Eur. Phys. J. B 86, 224 (2013), doi: 10.1140/epjb/e2013-40046-y
  • [14] F. Mancini, E. Plekhanov, G. Sica, J. Phys. Conf. Series 391, 012148 (2012), doi: 10.1088/1742-6596/391/1/012148
  • [15] R.A. Bari, Phys. Rev. B 3, 2662 (1971), doi: 10.1103/PhysRevB.3.2662
  • [16] G. Beni, P. Pincus, Phys. Rev. B 9, 2963 (1974), doi: 10.1103/PhysRevB.9.2963
  • [17] R.S. Tu, T.A. Kaplan, Phys. Status Solidi B 63, 659 (1974), doi: 10.1002/pssb.2220630229
  • [18] R. Micnas, S. Robaszkiewicz, K.A. Chao, Phys. Rev. B 29, 2784 (1984), doi: 10.1103/PhysRevB.29.2784
  • [19] K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta. Phys. Pol. A 118, 350 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p30.pdf
  • [20] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 23, 105601 (2011), doi: 10.1088/0953-8984/23/10/105601
  • [21] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 23, 249802 (2011), doi: 10.1088/0953-8984/23/24/249802
  • [22] K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1029 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p11.pdf
  • [23] W. Kłobus, K. Kapcia, S. Robaszkiewicz, Acta. Phys. Pol. A 118, 353 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf
  • [24] K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1032 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p12.pdf
  • [25] S. Robaszkiewicz, Phys. Status Solidi B 59, K63 (1973), doi: 10.1002/pssb.2220590155
  • [26] S. Robaszkiewicz, Phys. Status Solidi B 70, K51 (1975), doi: 10.1002/pssb.2220700156
  • [27] S. Robaszkiewicz, Acta Phys. Pol. A 55, 453 (1979)
  • [28] S. Murawski, K. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1035 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p13.pdf
  • [29] S. Murawski, K.J. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 127, 281 (2015), doi: 10.12693/APhysPolA.127.281
  • [30] S. Murawski, K. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 126, A-110 (2014), doi: 10.12693/APhysPolA.126.A-110
  • [31] S.A. Pirogov, Ya.G. Sinai, Theor. Math. Phys. 25, 1185 (1975), doi: 10.1007/BF01040127
  • [31a] S.A. Pirogov, Ya.G. Sinai, Theor. Math. Phys. 26, 39 (1976)
  • [32] J. Jędrzejewski, Z. Phys. B 48, 219 (1982), doi: 10.1007/BF01420583
  • [32a] J. Jędrzejewski, Z. Phys. B 59, 325 (1985), doi: 10.1007/BF01307438
  • [33] U. Brandt, J. Stolze, Z. Phys. B 62, 433 (1986), doi: 10.1007/BF01303574
  • [34] J. Jędrzejewski, Physica A 205, 702 (1994), doi: 10.1016/0378-4371(94)90231-3
  • [35] N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966), doi: 10.1103/PhysRevLett.17.1133

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2038kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.