Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 254-256

Article title

Characterization of Novel High-Pressure Close-Packed Superconducting Phase of Boron

Content

Title variants

Languages of publication

EN

Abstracts

EN
We report study on the thermodynamic properties of the novel high-pressure superconducting phase of boron with hexagonal P6₃/mcm structure. Our analysis is conducted at the pressure of p=400 GPa, which is motivated by the highest value of the superconducting transition temperature (T_{C}) observed previously under such conditions for the P6₃/mcm boron. Our investigations of the thermodynamic properties are performed within the Eliashberg formalism, due to the strong-coupling character of the considered material. In particular, we calculate the thermodynamic properties of the superconducting state which allows us to determine the values of the characteristic dimensionless parameters; the zero-temperature energy gap to the critical temperature, the ratio of the specific heats, as well as the ratio connected with the zero-temperature thermodynamic critical field.

Keywords

EN

Contributors

  • Institute of Physics, Jan Długosz University in Częstochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland

References

  • [1] R. Szczęśniak, A.P. Durajski, Solid State Sci. 25, 45 (2013), doi: 10.1016/j.solidstatesciences.2013.07.023
  • [2] D.-W. Zhou, C.-Y. Pu, D. Szczęśniak, G.-F. Zhang, C. Lu, G.-Q. Li, J.-F. Song, Chin. Phys. Lett. 30 027401 (2013), doi: 10.1088/0256-307X/30/2/027401
  • [3] L. Shi, D.A. Papaconstantopoulos, Phys. Rev. B 73, 184516 (2006), doi: 10.1103/PhysRevB.73.184516
  • [4] K. Shimizu, K. Amaya, N. Suzuki, J. Phys. Soc. Jpn. 74, 1345 (2005), doi: 10.1143/JPSJ.74.1345
  • [5] S. Deemyad, J.S. Schilling, Phys. Rev. Lett. 91, 167001 (2003), doi: 10.1103/PhysRevLett.91.167001
  • [6] M. Sakata, Y. Nakamoto, K. Shimizu, T. Matsuoka, Y. Ohishi, Phys. Rev. B 83, 220512(R) (2011), doi: 10.1103/PhysRevB.83.220512
  • [7] R. Szczęśniak, D. Szczęśniak, Phys. Status Solidi B 249, 2194 (2012), doi: 10.1002/pssb.201248032
  • [8] R. Szczęśniak, M.W. Jarosik, D. Szczęśniak, Physica B 405, 4897 (2010), doi: 10.1016/j.physb.2010.09.036
  • [9] Y. Ma, J.S. Tse, D.D. Klug, R. Ahuja, Phys. Rev. B 70, 214107 (2004), doi: 10.1103/PhysRevB.70.214107
  • [10] D. Li, K. Bao, F. Tian, X. Jin, D. Duan, Z. He, B. Liu, Tian Cui, RSC Adv. 4, 203 (2014), doi: 10.1039/c3ra45777j
  • [11] M. Cyrot, D. Pavuna, Introduction to Superconductivity and High-T_C Materials, World Scientific, Singapore 1992
  • [12] For the discussion of the Eliashberg formalism [originally formulated by G.M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)] we refer to: J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990), doi: 10.1103/RevModPhys.62.1027
  • [13] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957), doi: 10.1103/PhysRev.106.162
  • [14] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.108.1175
  • [15] R. Szczęśniak, D. Szczęśniak, A.P. Durajski, Solid State Commun. 184, 6 (2014), doi: 10.1016/j.ssc.2013.12.036
  • [16] R. Szczęśniak, D. Szczęśniak, K.M. Huras, Phys. Status Solidi B 251, 178 (2014), doi: 10.1002/pssb.201349087

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2028kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.