Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 240-242

Article title

Thermal Conductivity of Ce₂Ru₃Ga₉ Compound

Content

Title variants

Languages of publication

EN

Abstracts

EN
The Ce-based 2:3:9 series of compounds are known for strongly correlated 4f-electron behaviour. Here, we report for the first time a study of the thermal conductivity κ(T) in zero and 9 T magnetic field for Ce₂Ru₃Ga₉ across the temperature range 2 K ≤ T ≤ 300 K. The zero-field temperature dependence of κ(T) exhibits a pronounced maximum, characteristic for metals with large electronic mean free path and towards room temperature κ(T) starts behaving in a manner usually attributed to the enhanced electron-phonon coupling. Based on the Wiedemann-Franz law the electronic and lattice contributions to the thermal conductivity were estimated. In high temperature region a distinct step-like anomaly at T* = 203 K has been observed which signals a putative phase transition, probably of phononic or lattice origin. We furthermore discuss the effect of applied magnetic fields on the thermal transport in Ce₂Ru₃Ga₉.

Keywords

Contributors

author
  • Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
author
  • Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa

References

  • [1] B. Buschinger, C. Geibel, M. Weiden, C. Dietrich, G. Cordier, G. Olesch, J. Köhler, F. Steglich, J. Alloys Comp. 260, 44 (1997), doi: 10.1016/S0925-8388(97)00174-6
  • [2] B. Buschinger, O. Trovarelli, M. Weiden, C. Geibel, F. Steglich, J. Alloys Comp. 275-277, 633 (1998), doi: 10.1016/S0925-8388(98)00408-3
  • [3] N. Kumar, K.V. Shah, R. Nagalakshmi, S.K. Dhar, J. Appl. Phys. 107, 09E113 (2010), doi: 10.1063/1.3365068
  • [4] M. Schlüter, W. Jeitschko, Z. Anorg. Allg. Chem. 626, 2217 (2000), doi: 10.1002/1521-3749(200010)626:10<2217::AID-ZAAC2217>3.0.CO;2-B
  • [5] M. Falkowski, A.M. Strydom, J. Low Temp. Phys. 175, 498 (2014), doi: 10.1007/s10909-013-0907-5
  • [6] G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984), doi: 10.1103/RevModPhys.56.755
  • [7] E. Bauer, E. Gratz, G. Adam, J. Phys. Condens. Matter 16, 493 (1986) http://iopscience.iop.org/0305-4608/16/4/013
  • [8] E. Bauer, E. Gratz, G. Hutflesz, H. Müller, J. Phys. Condens. Matter 3, 7641 (1991) http://iopscience.iop.org/0953-8984/3/39/010
  • [9] A. Kowalczyk, T. Toliński, M. Falkowski, M. Timko, Acta Phys. Pol. A 118, 936 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z5p089.pdf
  • [10] A. Kowalczyk, M. Falkowski, Intermetallics 37, 65 (2013), doi: 10.1016/j.intermet.2013.01.016

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2023kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.