Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 231-233

Article title

Pressure Dependence of the Thermodynamic Critical Field in Francium

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the paper, the values of the thermodynamic critical field (H_{C}) for francium have been calculated. It has been assumed the wide range of the pressure: p∈ ⟨7.2; 14⟩ GPa. The analysis has been performed in the framework of the strong-coupling formalism. It has been predicted that the value of the ratio H_{C}(0)/√ρ(0) increases with the increasing pressure from 3.08 meV to 5.84 meV, where ρ(0) denotes the electron density of states at the Fermi level. The dimensionless parameter T_{C}C^{N}(T_{C})/H²_{C}(0) is smaller than in the BCS theory and decreases with pressure from 0.150 to 0.141. The symbol T_{C} represents the critical temperature and C^{N} is the specific heat for the normal state.

Keywords

EN

Contributors

author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
author
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland

References

  • [1] C. Fry, M. Thoennessen, At. Data Nucl. Data 99, 497 (2013), doi: 10.1016/j.adt.2012.05.003
  • [2] A.P. Koufos, D.A. Papaconstantopoulos, Int. J. Quantum Chem. 113, 2070 (2013), doi: 10.1002/qua.24466
  • [3] G.M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)
  • [4] D.J. Scalapino, in: Superconductivity, Ed. R.D. Parks, Marcel Dekker, New York 1969
  • [5] P.B. Allen, B. Mitrovic, in: Solid State Physics, Eds. F. Seitz, D. Turnbull, H. Ehrenreich, Academic Press, New York 1982
  • [6] R. Szczęśniak, Acta Phys. Pol. A 109, 179 (2006) http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z205.pdf
  • [7] R. Szczęśniak, Solid State Commun. 138, 347 (2006), doi: 10.1016/j.ssc.2006.03.012
  • [8] R. Szczęśniak, D. Szczęśniak, K.M. Huras, Phys. Status Solidi B 251, 178 (2014), doi: 10.1002/pssb.201349087
  • [9] R. Szczęśniak, A.P. Durajski, P.W. Pach, J. Phys. Chem. Solids 75, 224 (2014), doi: 10.1016/j.jpcs.2013.09.019
  • [10] D. Szczęśniak, R. Szczęśniak, Acta Phys. Pol. A 127, 254 (2014), doi: 10.12693//APhysPolA.126.254
  • [11] J. Bardeen, M. Stephen, Phys. Rev. 136, A1485 (1964), doi: 10.1103/PhysRev.136.A1485
  • [12] J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990), doi: 10.1103/RevModPhys.62.1027
  • [13] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York 2005
  • [14] C.S. Lue, H.F. Liu, C.N. Kuo, P.S. Shih, J.-Y. Lin, Y.K. Kuo, M.W. Chu, T.-L. Hung, Y.Y. Chen, Supercond. Sci. Technol. 26, 055011 (2013), doi: 10.1088/0953-2048/26/5/055011
  • [15] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.108.1175

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2020kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.