Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 2 | 650-652

Article title

Thermal Compensation Model of Magnetic Circuits with Modern Magnetic Materials

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work a quantitative analysis of thermal compensation has been performed for a magnetic circuit producing magnetic field in the air gap. The considered system consists of Sm₃Co₁₇ type permanent magnet (as a source of magnetic field), nanocrystalline FINEMET alloy (as ultra-soft magnetic medium) and Fe-Ni low Curie temperature compensative material (as a magnetic shunt). Distribution of magnetic field induction in the circuit has been calculated numerically within standard one-dimensional approximation, considering nonlinearities of compensative material as well as demagnetization susceptibility of permanent magnet. It has been theoretically predicted, that an appropriate choice of the compensative element thickness improves significantly thermal stability of magnetic field in the air gap.

Keywords

Contributors

author
  • Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland
  • Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom, Poland

References

  • [1] K. Turek, J. Chmist, H. Figiel,J. Magn. Magn. Mater. 157-158, 65 (1996), doi: 10.1016/0304-8853(95)01259-1
  • [2] S.H. Kim, C. Doose,Particle Accelerator Conference 3, 3227 (1997), doi: 10.1109/PAC.1997.753163
  • [3] K.R. Rajagopal, B. Singh, B.P. Singh, N. Vedachalam,IEEE Transactions on Magnetics 37, 1995 (2001), doi: 10.1109/20.951032
  • [4] T. Mihara, Y. Iwashita, M. Kumada, A. Evgeny, Ch.M. Spencer, SLAC-PUB-10248, 1 (2004)
  • [5] T. Mihara, Y. Iwashita, M. Kumada, E. Antokhin, E. Sugiyama, C.M. Spencer, SLAC-PUB-10876, 1 (2004)
  • [6] K. Bertsche, G.W.Foster, J-F. Ostiguy, IEEE Proc. 95CH35843, 1381 (1996)
  • [7] G.W. Foster, FERMILAB-CONF-98-423-AD Conf. Proc. C980622, 189 (1998)
  • [8] Vacuumschmelze http://vacuumschmelze.com
  • [9] Y. Yoshizawa, S. Oguma and K. Yamauchi,J. Appl. Phys. 64, 6044 (1988), doi: 10.1063/1.342149
  • [10] Hitachi Metals Ltd http://hitachi-metals.co.jp
  • [11] G. Herzer,IEEE Trans. Magn. 26, 1397 (1990), doi: 10.1109/20.104389
  • [12] G. Herzer, Hanbook of Magnetic Materials, Vol. 10, Chap. 3, Ed. K.H.J. Buschow, Elsevier Science, Amsterdam 1997, p. 415
  • [13] T. Szumiata, K. Brzózka, M. Gawroński, B. Górka, J.S. Blázquez-Gámez, T. Kulik, R. Żuberek, A. Ślawska-Waniewska,J. Magn. Magn. Mater. 272-276, 1443 (2004), doi: 10.1016/j.jmmm.2003.12.371

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n2161kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.