Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 4 | 709-716

Article title

Evaporation of Micro-Droplets: the "Radius-Square-Law" Revisited

Content

Title variants

Languages of publication

EN

Abstracts

EN
The range of applicability of a fundamental tool for studying the evolution of droplets, the "radius-square-law", was investigated both analytically and numerically, on the basis of the experimental results of our own as well as of other authors. Standard issues were briefly discussed. Departures from the "radius-square-law" caused by the influence of impurities encountered in non-ideal liquids, by the kinetic and surface tension effects encountered for small droplets or by thermal imbalance encountered in light-absorbing droplets were analysed. The entanglement between the kinetic and impurities effects was studied numerically yielding a possible explanation to evaporation coefficient discrepancies found in the literature. An unexpected "radius-square-law" persistence in case of non-isothermal evolutions of very small droplets in atmosphere nearly saturated with vapour was analysed. The coexistence of the kinetic effects and the strong effects of surface tension was found responsible for this effect.

Keywords

Contributors

author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

References

  • [1] F. Duan, I. Thompson, C.A. Ward, J. Phys. Chem. B 112, 8605 (2008)
  • [2] R. Hołyst, M. Litniewski, J. Chem. Phys. 130, 074707 (2009)
  • [3] W.A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press, Cambridge 2010
  • [4] N.A. Fuchs, Evaporation and Droplet Growth in Gaseous Media, Pergamon, London 1959
  • [5] G.M. Nathanson, P. Davidovits, D.R. Worsnop, C.E. Kolb, J. Phys. Chem. 100, 13007 (1996)
  • [6] R. Hołyst, M. Litniewski, Phys. Rev. Lett. 100, 055701 (2008)
  • [7] T. Ishiyama, T. Yano, S. Fujikawa, Phys. Fluids 16, 2899 (2004)
  • [8] A.J.H. McGaughey, C.A. Ward, J. Appl. Phys. 91, 6406 (2002)
  • [9] A.H. Persad, C.A. Ward, J. Chem. Phys. B 114, 6107 (2010)
  • [10] V. Babin, R. Hołyst, J. Phys. Chem. B 109, 11367 (2005)
  • [11] V. Babin, R. Hołyst, J. Chem. Phys. 122, 024713 (2005)
  • [12] D. Jakubczyk, G. Derkachov, T. Do Duc, K. Kolwas, M. Kolwas, J. Phys. Chem. A 114, 3483 (2010)
  • [13] M. Zientara, D. Jakubczyk, K. Kolwas, M. Kolwas, J. Phys. Chem. A 112, 5152 (2008)
  • [14] D. Jakubczyk, G. Derkachov, W. Bazhan, E. Łusakowska, K. Kolwas, M. Kolwas, J. Phys. D 37, 2918 (2004)
  • [15] F.G. Major, V.N. Gheorghe, G. Werth, Charged Particle Traps, Springer, Berlin 2005
  • [16] E.J. Davis, M.F. Buehler, T.L. Ward, Rev. Sci. Instrum. 61, 1281 (1990)
  • [17] S. Arnold, Rev. Sci. Instrum. 62, 3025 (1991)
  • [18] R.A. Shaw, D. Lamb, J. Chem. Phys. 111, 10659 (1999)
  • [19] E.E. Allison, B.R.F. Kendall, Rev. Sci. Instrum. 67, 3806 (1996)
  • [20] H. Ulmke, T. Wriedt, K. Bauckhage, Chem. Eng. Technol. 24, 265 (2001)
  • [21] E.R. Lee, M.L. Perl, Universal Fluid Droplet Ejector, 1999, U.S. Pat. No. 5943075
  • [22] S. Dehaeck, J.P.A.J. van Beeck, Exp. Fluids 45, 823 (2008)
  • [23] B. Steiner, B. Berge, R. Gausmann, J. Rohmann, E. Rühl, Appl. Opt. 38, 1523 (1999)
  • [24] N. Riefler, R. Schuh, T. Wriedt, Meas. Sci. Technol. 18, 2209 (2007)
  • [25] J.C. Maxwell, Collected Scientific Papers 11, 625 (1890)
  • [26] C.A. Ward, G. Fang, Phys. Rev. E 59, 429 (1999)
  • [27] J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York 1954
  • [28] J.D. Smith, C.D. Cappa, W.S. Drisdell, R.C. Cohen, R.J. Saykally, J. Am. Chem. Soc. 128, 12892 (2006)
  • [29] W.S. Drisdell, C.D. Cappa, J.D. Smith, R.J. Saykally, R.C. Cohen, Atmos. Chem. Phys. 8, 6699 (2008)
  • [30] A.M. Moyle, P.M. Smidansky, D. Lamb, in: Am. Meteorological Soc. Proc. 12th Conf. Cloud Physics, Madison (WI) 2006, https://ams.confex.com/ams/pdfpapers/111916.pdf
  • [31] H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, Kluwer, Dordrecht 1997
  • [32] G. Fang, C.A. Ward, Phys. Rev. E 59, 417 (1999)
  • [33] M. Knudsen, The Kinetic Theory of Gases: Some Modern Aspects, Methuen, London 1950
  • [34] P.A.J. Bagot, C. Waring, M.L. Costen, K.G. McKendrick, J. Phys. Chem. C 112, 10868 (2008)
  • [35] F.R. McFeely, G.A. Somorjai, J. Phys. Chem. 76, 914 (1972)
  • [36] P.M. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala, K.E.J Lehtinen, T. Vesala, J. Geophys. Res. 111, D19202 (2006)
  • [37] S.K. Friedlander, Smoke, Dust and Haze Fundamentals of Aerosol Dynamics, Oxford University Press, New York 2000
  • [38] C. Erlick, V. Ramaswamy, J. Geophys. Res. 108, 2963 (2003)
  • [39] P. Davidovits, D.R. Worsnop, J.T. Jayne, C.E. Kolb, P. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala, K.E.J. Lehtinen, T. Vesala, M. Mozurkewich, Geophys. Res. Lett. 31, L22111 (2004)
  • [40] A. Laaksonen, T. Vesala, M. Kulmala, P.M. Winkler, P.E. Wagner, Atmos. Chem. Phys. Discuss. 4, 7281 (2004)
  • [41] P.M. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala, K.E.J. Lehtinen, T. Vesala, Phys. Rev. Lett. 93, 75701 (2004)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n413kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.