Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 220-223

Article title

Preparation, Study and Nanoscale Growth of Indium Oxide Thin Films

Content

Title variants

Languages of publication

EN

Abstracts

EN
Indium oxide (In_2O_3) thin films were deposited on glass substrate by varying substrate temperature in the range of 400-600C using the spray pyrolysis technique. In this research, physical properties of indium oxide thin films were studied and then nanocrystalline sizes at different substrate temperature were deeply compared and investigated. All films were characterized at room temperature using X-ray diffraction, scanning electron microscopy, atomic force microscopy, photoluminescence, the Hall effect and UV-visible spectrophotometer. The optimal substrate temperature to obtain films of high crystallographic quality was 575°C, for this temperature, the electrical resistivity was in the order of ρ=0.147 Ω cm. For comparing optical transmittance and electrical conductivity the best figure of merit of the films was achieved at 575C.

Keywords

EN

Contributors

  • Islamic Azad University, Lahijan Branch, P.O. Box 1616, Lahijan, Iran
author
  • Physics Department, University of Guilan, Rasht 41335, Iran
author
  • Physics Department, University of Guilan, Rasht 41335, Iran

References

  • 1. M.K. Fung, Y.Ch. Sun, A. Ng, A.M.Ch. Ng, A.B. Djuristic, H.T. Chan, W.K. Chan, ACS Appl. Mater. Interfaces 3, 522 (2011)
  • 2. X. Yan, F.W. Mont, D.J. Poxson, M.F. Schubert, J.K. Kim, J. Cho, E.F. Schubert, Jpn. J. Appl. Phys. 48, 120203 (2009)
  • 3. L. Guo, X. Shen, G. Zhu, K. Chen, Sens. Actuators B: Chem., (2011) [doi:10.1016/j.snb.2011.01.042]
  • 4. H. Chen, Chin. Opt. Lett. 8, 201 (2010)
  • 5. C.M. White, D.T. Gillaspie, E. Whitney, S.-H. Lee, A.C. Dillon, Thin Solid Films 517, 3596 (2009)
  • 6. J.A. Anna Selvan, A.E. Delahoy, S. Guo, Y. Li, Solar Energy Mater. Solar Cells 90, 3371 (2006)
  • 7. G. Cheng, E. Stern, S. Guthrie, M.A. Reed, R. Klie, Y. Hao, G. Meng, L. Zhang, Appl. Phys. A 85, 233 (2006)
  • 8. N. Memarian, S.M. Rozati, E. Elamurugu, E. Fortunato, J. Phys. Status Solidi C 7, 2277 (2010)
  • 9. S. Golshahi, S.M. Rozati, R. Martins, E. Fortunato, Thin Solid Films 518, 1149 (2009)
  • 10. S. Boycheva, A.K. Sytchkova, M.L. Grilli, A. Piegari, Thin Solid Films 515, 8469 (2007)
  • 11. J. Zhou, Ph.D. Thesis, 2005
  • 12. S.M. Rozati, T. Ganj, Renew. Energy 29, 1665 (2004)
  • 13. G. Korotcenkov, M. Nazarov, M.V. Zamoryanskaya, M. Ivanov, Thin Solid Films 515, 8065 (2007)
  • 14. S. Parthibab, V. Gokulakrishnan, K. Ramamurthi, E. Elangovan, R. Martins, E. Fortunato, R. Ganenan, Solar Energy Mater. Solar Cells 93, 92 (2009)
  • 15. A. El Hichou, A. Kachouance, J.L. Bubendorff, M. Addou, J. Ebothe, M. Troyon, A. Bougrine, Thin Solid Films 458, 263 (2004)
  • 16. M.S. Lee, W.C. Choi, E. Kim, C.K. Kim, S.K. Min, Thin Solid Films 279, 3 (1996)
  • 17. E. Burstein, Phys. Rev. 93, 632 (1952)
  • 18. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958)
  • 19. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1959)
  • 20. M.M. Bagheri Mohagheghi, M. Shokooh Saremi, Semicond. Sci. Technol. 18, 97 (2003)
  • 21. Y. Shigesato, S. Takaki, T. Haranoh, Appl. Surf. Sci. Technol. 269, 48 (1991)
  • 22. G. Haack, J. Appl. Phys. 47, 4086 (1976)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n1p44kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.