Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 1 | 118-121

Article title

Effect of Grain Size on Mechanical Properties of Irradiated Mono- and Polycrystalline MgAl_2O_4

Content

Title variants

Languages of publication

EN

Abstracts

EN
The influence of the size of crystalline regions on mechanical properties of irradiated oxides has been studied using a magnesium aluminate spinel MgAl_2O_4. The samples characterized by different dimensions of crystalline domains, varying from sintered ceramics with grains of few micrometers in size up to single crystals, were used in the experiments. The samples were irradiated at room temperature with 320 keV Ar^{2+} ions up to fluences reaching 5 × 10^{16} cm^{-2}. Nanomechanical properties (nanohardness and Young's modulus) were measured by using a nanoindentation technique and the resistance to crack formation by measurement of the total crack lengths made by the Vickers indenter. The results revealed several effects: correlation of nanohardness evolution with the level of accumulated damage, radiation-induced hardness increase in grain-boundary region and significant improvement of material resistance to crack formation. This last effect is especially surprising as the typical depth of cracks formed by Vickers indenter in unirradiated material exceeds several tens of micrometers, i.e. is more than hundred times larger than the thickness of the modified layer.

Keywords

Contributors

author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
  • The Andrzej Sołtan Institute for Nuclear Studies, Otwock/Świerk, Poland
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
  • Institut d'Electronique Fondamentale, Université Paris-Sud, Orsay, France
author
  • Université d'Evry-Val d'Essonne, Evry, France
author
  • Université d'Evry-Val d'Essonne, Evry, France
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
  • Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse CNRS-IN2P3, Université Paris-Sud, Orsay, France
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
  • Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse CNRS-IN2P3, Université Paris-Sud, Orsay, France
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
  • Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland

References

  • 1. R.C. Ewing, W.J. Weber, J. Lian, J. Appl. Phys. 95, 5949 (2004)
  • 2. M. Bunn, J.P. Holdren, Ann. Rev. Energy Environ. 22, 403 (1997)
  • 3. W. Stoll, Mater. Res. Bull. 23, 6 (1998)
  • 4. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York 1985 ( http://www.srim.org/)
  • 5. Handbook of Modern Ion Beam Materials Analysis, Eds. J.R. Tesmer, M. Nastasi, Materials Research Society, Pittsburgh PA, USA 1995
  • 6. A.A. Pelegri, X. Huang, Comp. Sci. Technol. 68, 147 (2008)
  • 7. C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)
  • 8. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Amer. Cer. Soc. 64, 533 (1981)
  • 9. J. Jagielski, L. Thomé, Vacuum 81, 1352 (2007)
  • 10. J. Jagielski, L. Thomé, Appl. Phys. A 97, 147 (2009)
  • 11. S. Moll, L. Thomé, G. Sattonnay, A. Debelle, F. Garrido, L. Vincent, J. Jagielski, J. Appl. Phys. 106, 073509 (2009)
  • 12. J. Jagielski, L. Thomé, Nucl. Instrum. Methods Phys. Res. B 266, 1212 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv120n130kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.