Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 118 | 4 | 540-549

Article title

On the Possibility of Determining the Distribution of a Substance Penetrating into a Dense Medium Using Gamma-Ray Detection and Ranging Approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
The possibility has been investigated of determining, using graydar (Gamma RAY Detection And Ranging) approach, the in-depth partial-density profile of some substance absorbed in a dense medium. Analytical algorithms have been derived for retrieving the in-depth profile of the partial density of the absorbed substance on the basis of the conjecturally known in-depth profile of the extinction of the absorbing medium and the experimentally determinable graydar profile. The retrieval error under the Poisson noise conditions has also been estimated analytically. The simulations performed of the Poisson-noise effect concern the case of soil moisture. The results obtained confirm the validity of the derived retrieval algorithms and error estimates and show that the soil moisture profile may be accurately determined to depths of 50 cm, depending on the dry-soil bulk density, the sensing photon flux, and the measurement time.

Keywords

Contributors

author
  • Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
author
  • Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
author
  • Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
  • Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tzarigradsko Shosse Blvd., 1784 Sofia, Bulgaria

References

  • 1. J.A. Stokes, K.R. Alvar, R.L. Corey, D.G. Costello, J. John, S. Kocimski, N.A. Lurie, D.D. Thayer, A.P. Trippe, J.C. Young, Nucl. Instrum. Methods Phys. Res. 193, 261 (1982)
  • 2. G. Harding, J. Kosanetzky, Nucl. Instrum. Methods Phys. Res. 280, 517 (1989)
  • 3. N.V. Arendtsz, E.M.A. Hussein, IEEE Trans. Nucl. Sci. 42, 2155 (1995)
  • 4. N.V. Arendtsz, E.M.A. Hussein, IEEE Trans. Nucl. Sci. 42, 2166 (1995)
  • 5. P. Zhu, P. Duvauchelle, G. Peix, D. Babot, Meas. Sci. Technol. 7, 281 (1996)
  • 6. S.J. Norton, J. Appl. Phys. 76, 2007 (1994)
  • 7. R.S. Thoe, Rev. Sci. Instrum. 67, 89 (1996)
  • 8. B.L. Evans, J.B. Martin, L.W. Burggrat, M.C. Roggemann, IEEE Trans. Nucl. Sci. 45, 950 (1998)
  • 9. B.L. Evans, J.B. Martin, L.W. Burggrat, M.C. Roggemann, T.N. Hangartner, Nucl. Instrum. Methods Phys. Res. 480, 797 (2002)
  • 10. G. Herman, Image Reconstruction from Projections. The Fundamentals of Computerized Tomography, Academic Press, New York 1980
  • 11. F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester 1986
  • 12. B. Gustafsson, Phys. Scr. T 61, 38 (1996)
  • 13. L.L. Gurdev, D.V. Stoyanov, T.N. Dreischuh, Ch.N. Protochristov, O.I. Vankov, IEEE Trans. Nucl. Sci. 54, 262 (2007)
  • 14. L.L. Gurdev, T.N. Dreischuh, D.V. Stoyanov, Ch.N. Protochristov, in: Nuclear Methods for Non-Nuclear Applications, Ed. Ch. Stoyanov, Heron Press, Sofia 2007, p. 333
  • 15. T.N. Dreischuh, L.L. Gurdev, D.V. Stoyanov, Ch.N. Protochristov, O.I. Vankov, AIP Conf. Proc. 889, 778 (2007)
  • 16. T.N. Dreischuh, L.L. Gurdev, D.V. Stoyanov, Ch.N. Protochristov, O.I. Vankov, Proc. SPIE 6604, 660420 (2007)
  • 17. G. Hertz, Lehrbuch der Kernphysik I (Experimentalle Verfahren), B.G. Teubner Verlagsgesellshaft, Leipzig 1966
  • 18. P.P. Kane, Radiat. Phys. Chem. 50, 31 (1997)
  • 19. M. Schumacher, Phys. Rev. 182, 7 (1969)
  • 20. V.E. Radko, Instrum. Exp. Tech. 34, 929 (1991)
  • 21. J. Gerl, F. Ameil, I. Kojouharov, A. Surowiec, Nucl. Instrum. Methods Phys. Res. A 525, 328 (2004)
  • 22. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, XCOM: Photon Cross Section Database (version 1.3), [Online] Available: http://physics.nist.gov/xcom . National Institute of Standards and Technology, Gaithersburg, MD 2005
  • 23. J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4), [Online] Available: http://physics.nist.gov/xaamdi . National Institute of Standards and Technology, Gaithersburg, MD 2004
  • 24. J.R. Tickner, in: Proc. 2nd RCM for the CRP Application of Nuclear Techniques to Humanitarian Demining, IAEA, St. Petersburg 2001, p. 68
  • 25. K. Saito, P. Jakob, Radiat. Prot. Dosimetry 58, 29 (1995)
  • 26. K.F. Eckerman, J.C. Ryman, External Exposure to Radionuclides in Air, Water, and Soil, Federal Guidance Report No. 12, U.S. Environmental Protection Agency, Washington, D.C. 1993
  • 27. L. Wielopolski, Z. Song, I. Orion, A.L. Hanson, G. Hendrey, Appl. Radiat. Isot. 62, 97 (2005)
  • 28. C.E. Ordonez, Al. Bolozdynya, W. Chang, IEEE Nucl. Sci. Conf. Record 2, 1361 (1997)
  • 29. V.A. Bushuev, R.N. Kuz'min, Sov. Phys. Usp. 20, 406 (1977)
  • 30. R. Pani, P. Bennati, M. Betti, M.N. Cinti, R. Pellegrini, M. Mattioli, V. Orsolini, F. Cencelli, D. Navarria, G. Bollini, F. Moschini, F. Garibaldi, de Notaristefani, Nucl. Instrum. Methods Phys. Res. A 567, 294 (2006)
  • 31. W.W. Moses, Nucl. Instrum. Methods Phys. Res. A 487, 123 (2002)
  • 32. S.E. Derenzo, M.J. Weber, M.K. Klintenberg, Nucl. Instrum. Methods Phys. Res. A 486, 214 (2002)
  • 33. W.K. Warburton, P.M. Grudberg, Nucl. Instrum. Methods Phys. Res. A 568, 350 (2006)
  • 34. S.M. Rytov, Yu.A. Kravtzov, V.I. Tatarski, Introduction to Statistical Radiophysics, Vol. 2, Nauka, Moscow 1978
  • 35. V.A. Ilin, V.A. Sadovnichi, Bl.H. Sendov, Mathematical Analysis, Part I, Nauka i Izkustvo, Sofia 1979

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv118n405kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.