Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 117 | 2 | 257-263

Article title

From Atomic Resolution to Molecular Giants: an Overview οf Crystallographic Studies of Biological Macromolecules with Synchrotron Radiation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Protein crystals have huge unit cells ( ≈100 Å) filled not only with ordered protein molecules but also in about 50% with liquid water. The phase problem in protein crystallography can be solved by molecular replacement (using a suitable model molecule), by isomorphous replacement (using heavy atom derivatives), or by multiwavelength anomalous difraction (using resonant scattering of synchrotron-generated X-rays by anomalous atoms, such as Se). X-ray diffraction by protein crystals produces thousands of reflections but since the models are very complex (many thousands of atoms), paucity of data is a serious problem and stereochemical restraints are necessary. In consequence, the highest possible resolution (minimum d-spacing in Bragg's Equation) should always be the experimental goal. Protein structures determined by crystallography are deposited in protein data bank, which currently holds more than 62000 entries. Recent methodological advancements, stimulated by a wide-spread use of powerful synchrotron sources and by structural genomics, have resulted in rapid acceleration of the structure elucidation process, and in addition help to obtain a better data. Protein crystallography has produced atomic models of gigantic macromolecular assemblies, including the ribosome. It is also providing accurate targets for structure-guided development of drugs.

Keywords

Contributors

author
  • Department of Crystallography, Faculty of Chemistry, Poznań, Poland
  • A. Mickiewicz University and Center for Biocrystallographic Research Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

References

  • 1. B. Rupp, Biomolecular Crystallography, Garland Science, New York 2009
  • 2. M. Jaskolski, Introduction to protein crystallography for physicists, www.man.poznan.pl/CBB/PRESENTATIONS/Jaskolski-APP.pdf, 2009
  • 3. A.L. Patterson, Z. Kristallogr. A 90, 517 (1935)
  • 4. M.G. Rossmann, D.M. Blow, Acta Crystallogr. 15, 24 (1962)
  • 5. D.W. Green, V.M. Ingram, M.F. Perutz, Proc. Roy. Soc. A 225, 287 (1954)
  • 6. Z. Dauter, M. Dauter, K.R. Rajashankar, Acta Crystallogr. D 56, 232 (2000)
  • 7. W.A. Hendrickson, Scienceg 254, 51 (1991)
  • 8. Z. Dauter, M. Dauter, E.J. Dodson, Acta Crystallogr. D 58, 494 (2002)
  • 9. G.N. Murshudov, A.A. Vagin, E.J. Dodson, Acta Crystallogr. D 53, 240 (1997)
  • 10. A.T. Brunger, J. Kuriyan, M. Karplus, Scienceg 235, 458 (1987)
  • 11. R. Engh, R. Huber, Acta Crystallogr. A 47, 392 (1991)
  • 12. F.H. Allen, Acta Crystallogr. B 58, 380 (2002)
  • 13. G.M. Sheldrick, Acta Crystallogr. D 46, 467 (1990)
  • 14. C. Jelsch, M.M. Teeter, V. Lamzin, V. Pichon-Pesme, R.H. Blessing, C. Lecomte, Proc. Natl. Acad. Sci. USAg 97, 3171 (2000)
  • 15. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res. 28, 235 (2000)
  • 16. A. Wlodawer, W. Minor, Z. Dauter, M. Jaskolski, FEBS J. 275, 1 (2008)
  • 17. A.T. Brunger, Natureg 355, 472 (1992)
  • 18. M. Jaskolski, M. Gilski, Z. Dauter, A. Wlodawer, Acta Crystallogr. D 63, 611 (2007)
  • 19. J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, Natureg 181, 662 (1958)
  • 20. M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G. Will, A.C.T. North, Natureg 185, 416 (1960)
  • 21. A. Wlodawer, M. Miller, M. Jaskolski, B.K. Sathyanarayana, E. Baldwin, I.T. Weber, L.M. Selk, L. Clawson, J. Schneider, S.B.H. Kent, Scienceg 245, 616 (1989)
  • 22. M. Jaskolski, Postepy Biochemiig 55, 15 (2009)
  • 23. A.C. Bloomer, J.A. Champness, G. Bricogne, R. Staden, A. Klug, Natureg 276, 362 (1978)
  • 24. S.C. Harrison, A.J. Olson, C.E. Schutt, F.K. Winkler, G. Bricogne, Natureg 276, 368 (1978)
  • 25. F. Schluentzen, A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi, A. Yonath, Cellg 102, 615 (2000)
  • 26. B.T. Wimberly, D.E. Broderson, W.M. Clemons, A.P. Carter, R.J. Morgan-Warren, C. Vonrhein, T. Hartsch, V. Ramakrishnan, Natureg 407, 327 (2000)
  • 27. N. Ban, P. Nissen, J. Hansen, P.B. Moore, T.A. Steitz, Scienceg 289, 905 (2000)
  • 28. M. Selmer, C.M. Dunham, F.V. Murphy, A. Weixlbaumer, S. Petry, A.C. Kelley, J.R. Weir, V. Ramakrishnan, Scienceg 313, 1935 (2006)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv117n201kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.